Ejemplo n.º 1
0
def eye_movement_detection_generator(
    capture: model.Immutable_Capture,
    gaze_data: utils.Gaze_Data,
    factory_start_id: int = None,
) -> Offline_Detection_Task_Generator:
    def serialized_dict(datum):
        if type(datum) is dict:
            return fm.Serialized_Dict(python_dict=datum)
        elif type(datum) is bytes:
            return fm.Serialized_Dict(msgpack_bytes=datum)
        else:
            raise ValueError("Unsupported gaze datum type: {}.".format(type(datum)))

    yield EYE_MOVEMENT_DETECTION_STEP_PREPARING_LOCALIZED_STRING, ()
    gaze_data = [serialized_dict(datum) for datum in gaze_data]

    if not gaze_data:
        utils.logger.warning("No data available to find fixations")
        yield EYE_MOVEMENT_DETECTION_STEP_COMPLETE_LOCALIZED_STRING, ()
        return

    use_pupil = utils.can_use_3d_gaze_mapping(gaze_data)

    segment_factory = model.Classified_Segment_Factory(start_id=factory_start_id)

    gaze_time = np.array([gp["timestamp"] for gp in gaze_data])

    yield EYE_MOVEMENT_DETECTION_STEP_PROCESSING_LOCALIZED_STRING, ()
    eye_positions = utils.gaze_data_to_nslr_data(
        capture, gaze_data, gaze_time, use_pupil=use_pupil
    )

    yield EYE_MOVEMENT_DETECTION_STEP_CLASSIFYING_LOCALIZED_STRING, ()
    gaze_classification, segmentation, segment_classification = nslr_hmm.classify_gaze(
        gaze_time, eye_positions
    )

    # `gaze_classification` holds the classification for each gaze datum.

    yield EYE_MOVEMENT_DETECTION_STEP_DETECTING_LOCALIZED_STRING, ()
    for i, nslr_segment in enumerate(segmentation.segments):

        nslr_segment_class = segment_classification[i]

        segment = segment_factory.create_segment(
            gaze_data=gaze_data,
            gaze_time=gaze_time,
            use_pupil=use_pupil,
            nslr_segment=nslr_segment,
            nslr_segment_class=nslr_segment_class,
        )

        if not segment:
            continue

        serialized = segment.to_msgpack()

        yield EYE_MOVEMENT_DETECTION_STEP_DETECTING_LOCALIZED_STRING, serialized

    yield EYE_MOVEMENT_DETECTION_STEP_COMPLETE_LOCALIZED_STRING, ()
Ejemplo n.º 2
0
def eye_movement_detection_generator(
    capture: model.Immutable_Capture,
    gaze_data: utils.Gaze_Data,
    factory_start_id: int = None,
) -> Offline_Detection_Task_Generator:
    def serialized_dict(datum):
        if type(datum) is dict:
            return fm.Serialized_Dict(python_dict=datum)
        elif type(datum) is bytes:
            return fm.Serialized_Dict(msgpack_bytes=datum)
        else:
            raise ValueError("Unsupported gaze datum type: {}.".format(type(datum)))

    yield EYE_MOVEMENT_DETECTION_STEP_PREPARING_LOCALIZED_STRING, ()
    gaze_data = [serialized_dict(datum) for datum in gaze_data]

    if not gaze_data:
        utils.logger.warning("No data available to find fixations")
        yield EYE_MOVEMENT_DETECTION_STEP_COMPLETE_LOCALIZED_STRING, ()
        return

    use_pupil = utils.can_use_3d_gaze_mapping(gaze_data)

    segment_factory = model.Classified_Segment_Factory(start_id=factory_start_id)

    gaze_time = np.array([gp["timestamp"] for gp in gaze_data])

    yield EYE_MOVEMENT_DETECTION_STEP_PROCESSING_LOCALIZED_STRING, ()
    eye_positions = utils.gaze_data_to_nslr_data(
        capture, gaze_data, use_pupil=use_pupil
    )

    yield EYE_MOVEMENT_DETECTION_STEP_CLASSIFYING_LOCALIZED_STRING, ()
    gaze_classification, segmentation, segment_classification = nslr_hmm.classify_gaze(
        gaze_time, eye_positions
    )

    # `gaze_classification` holds the classification for each gaze datum.

    yield EYE_MOVEMENT_DETECTION_STEP_DETECTING_LOCALIZED_STRING, ()
    for i, nslr_segment in enumerate(segmentation.segments):

        nslr_segment_class = segment_classification[i]

        segment = segment_factory.create_segment(
            gaze_data=gaze_data,
            gaze_time=gaze_time,
            use_pupil=use_pupil,
            nslr_segment=nslr_segment,
            nslr_segment_class=nslr_segment_class,
        )

        if not segment:
            continue

        serialized = segment.to_msgpack()

        yield EYE_MOVEMENT_DETECTION_STEP_DETECTING_LOCALIZED_STRING, serialized

    yield EYE_MOVEMENT_DETECTION_STEP_COMPLETE_LOCALIZED_STRING, ()
Ejemplo n.º 3
0
    def _segment_generator(
        capture: model.Immutable_Capture,
        gaze_data: utils.Gaze_Data,
        factory_start_id: int = None,
    ):
        # TODO: Merge this version with the one in offline_detection_task

        if len(gaze_data) < 2:
            utils.logger.warning("Not enough data available to find fixations")
            return

        use_pupil = utils.can_use_3d_gaze_mapping(gaze_data)

        segment_factory = model.Classified_Segment_Factory(
            start_id=factory_start_id)

        gaze_time = np.array([gp["timestamp"] for gp in gaze_data])

        try:
            eye_positions = utils.gaze_data_to_nslr_data(capture,
                                                         gaze_data,
                                                         gaze_time,
                                                         use_pupil=use_pupil)
        except utils.NSLRValidationError as e:
            utils.logger.error(f"{e}")
            return

        gaze_classification, segmentation, segment_classification = nslr_hmm.classify_gaze(
            gaze_time, eye_positions)

        # by-gaze clasification, modifies events["gaze"] by reference
        for gaze, classification in zip(gaze_data, gaze_classification):
            gaze[utils.
                 EYE_MOVEMENT_GAZE_KEY] = model.Segment_Class.from_nslr_class(
                     classification).value

        # by-segment classification
        for i, nslr_segment in enumerate(segmentation.segments):

            nslr_segment_class = segment_classification[i]

            segment = segment_factory.create_segment(
                gaze_data=gaze_data,
                gaze_time=gaze_time,
                use_pupil=use_pupil,
                nslr_segment=nslr_segment,
                nslr_segment_class=nslr_segment_class,
                world_timestamps=capture.timestamps,
            )

            if not segment:
                continue

            yield segment
    def _segment_generator(
        capture: model.Immutable_Capture,
        gaze_data: utils.Gaze_Data,
        factory_start_id: int = None,
    ):
        # TODO: Merge this version with the one in offline_detection_task

        if not gaze_data:
            utils.logger.warning("No data available to find fixations")
            return

        use_pupil = utils.can_use_3d_gaze_mapping(gaze_data)

        segment_factory = model.Classified_Segment_Factory(start_id=factory_start_id)

        gaze_time = np.array([gp["timestamp"] for gp in gaze_data])

        eye_positions = utils.gaze_data_to_nslr_data(
            capture, gaze_data, use_pupil=use_pupil
        )

        gaze_classification, segmentation, segment_classification = nslr_hmm.classify_gaze(
            gaze_time, eye_positions
        )

        for i, nslr_segment in enumerate(segmentation.segments):

            nslr_segment_class = segment_classification[i]

            segment = segment_factory.create_segment(
                gaze_data=gaze_data,
                gaze_time=gaze_time,
                use_pupil=use_pupil,
                nslr_segment=nslr_segment,
                nslr_segment_class=nslr_segment_class,
            )

            if not segment:
                continue

            yield segment
Ejemplo n.º 5
0
def detect_events_hmm(etsamples,etevents,et,smoothpursuit=True):
    
    #etevents = etevents.loc[etevents.start_time < etsamples.smpl_time.iloc[-1]]


    # First add blinks
    etsamples = append_eventtype_to_sample(etsamples,etevents,eventtype='blink')
    
    # run only on subset
    #etsamples = etsamples.iloc[1:10000]
    #etevents = etevents[etevents.end_time<etsamples.iloc[-1].smpl_time]
    #
    
    
    
    #etsamples = etsamples.iloc[1:1000]
    t = etsamples.query('type!="blink"').smpl_time.values
    eye = etsamples.query('type!="blink"')[['gx','gy']].values

    tic()
    sample_class, segmentation, seg_class = nslr_hmm.classify_gaze(t, eye,optimize_noise=True)
    toc()
    sample_class = sample_class.astype(int)

    
    if smoothpursuit:
        eventtypes = np.asarray(['fixation','saccade','pso','smoothpursuit'])
    else:
        eventtypes = np.asarray(['fixation','saccade','pso','fixation'])
    nonblink = etsamples.type != 'blink'
    etsamples.loc[nonblink,'type'] = eventtypes[sample_class-1]
    
    etevents = pd.concat([etevents,
                         sampletype_to_event(etsamples,'saccade'),
                         sampletype_to_event(etsamples,'smoothpursuit'),
                         sampletype_to_event(etsamples,'pso'),
                         sampletype_to_event(etsamples,'fixation')],ignore_index=True)
    
    
    return(etsamples,etevents)
Ejemplo n.º 6
0
def segment_hmm(df):

      # HMM    
    sample_class, segmentation, seg_class = nslr_hmm.classify_gaze(df.ts.values, df[['gazeX', 'gazeY']].values,
              structural_error=0.2, optimize_noise=False # Assume 0.2 degree noise
              )
      
    # recreate a new signal using the segmented results.
    gaze_interp = interp1d(segmentation.t, segmentation.x, axis=0, bounds_error=False)
    df['gazeX_s'], df['gazeY_s'] = gaze_interp(df.ts).T.copy()

        
    # COLORS = {
    #       nslr_hmm.FIXATION: 'grey',
    #       nslr_hmm.SACCADE: 'blue',
    #       nslr_hmm.SMOOTH_PURSUIT: 'grey',
    #       nslr_hmm.PSO: 'grey',
    #       }
    
    # f, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True, figsize=(13,9))
    
    # hidtimes = df.ts.copy()
    # hidtimes[df.is_visible==1] = np.nan
    # ax1.plot(df.ts, df.target_x)
    # ax1.plot(hidtimes, df.target_x, label = 'hidden')
    # ax1.plot(df.ts[df.is_target==1], df.target_x[df.is_target==1], '.', markersize=3, label = 'target')
    # ax1.legend()
    # ax1.set_ylabel('target x (degrees)')
        

    # ax2.set_ylabel('x (degrees)')
    # for i, seg in enumerate(segmentation.segments):
    #       cls = seg_class[i]
    #       ax2.plot(seg.t, np.array(seg.x)[:,0], color=COLORS[cls], alpha=.6)
    
    # handlelist = [plt.plot([], marker="o", ls="", color=color)[0] for color in ['grey','blue']]
    # ax2.legend(handlelist,['other','saccade'])
    
    # ax3.set_ylabel('y (degrees)')
    # for i, seg in enumerate(segmentation.segments):
    #       cls = seg_class[i]
    #       ax3.plot(seg.t, np.array(seg.x)[:,1], color=COLORS[cls], alpha=.6)
    
    # handlelist = [plt.plot([], marker="o", ls="", color=color)[0] for color in ['grey','blue']]
    # ax3.legend(handlelist,['other','saccade'])
    
    # f.show()
    
    times = []
    xcoords = []
    ycoords = []
    for seg in segmentation.segments:
        times.append(seg.t)
        xcoords.append(np.array(seg.x)[:,0])
        ycoords.append(np.array(seg.x)[:,1])
    xcoords = pd.DataFrame(xcoords, columns = ['x_begin', 'x_end'])
    ycoords = pd.DataFrame(ycoords, columns = ['y_begin', 'y_end'])
    times = pd.DataFrame(times, columns = ['ts_begin', 'ts_end'])
    segdf = pd.concat([xcoords,ycoords,times],axis=1).reset_index()
    segdf['sclass'] = seg_class
    
    segdf_long = pd.melt(segdf, id_vars = ['index', 'sclass'])
    segdf_long['var'], segdf_long['timept'] = segdf_long['variable'].str.split('_', 1).str
    segdf_long = segdf_long[['index', 'sclass','value', 'var', 'timept']].copy()
    
    segdf_long = segdf_long.pivot_table(index=['index', 'sclass', 'timept'], columns=['var'], values='value').reset_index().copy()
    
    saccades = segdf_long[segdf_long.sclass == 2]
    saccades = saccades.rename(columns={"index": "segment_index"}).reset_index()
    saccades = saccades[['timept', 'ts', 'x', 'y', 'segment_index']].copy()

    def merge_saccades(ds):

        #remove duplicate ts --> end/begin that have the same ts.
        remove_border = ds.duplicated(subset=['ts'], keep=False)
        ds = ds[~remove_border]
        # recalculate segment index
        ds['segment_index_old'] = ds['segment_index'].copy()
        ds['segment_index'] = ds.groupby('timept').cumcount()+1
        return ds
    
    saccades_merged = merge_saccades(saccades)    
    
    df = df.reset_index(drop=True).merge(saccades_merged, how = 'left').copy()

    return df
Ejemplo n.º 7
0
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal
import nslr_hmm

# Simulate a dummy recording session
t = np.arange(0, 5, 0.01)
saw = ((t * 10) % 10) / 10.0 * 10.0  # 10 deg/second sawtooth
horiz_gaze = saw
vert_gaze = -saw
eye = np.vstack((horiz_gaze, vert_gaze)).T
eye += np.random.randn(*eye.shape) * 0.1

# Segment the data and classify the segments in one go using
# the default parameters.
sample_class, segmentation, seg_class = nslr_hmm.classify_gaze(t, eye)

COLORS = {
    nslr_hmm.FIXATION: 'blue',
    nslr_hmm.SACCADE: 'black',
    nslr_hmm.SMOOTH_PURSUIT: 'green',
    nslr_hmm.PSO: 'yellow',
}

plt.plot(t, eye[:, 0], '.')
for i, seg in enumerate(segmentation.segments):
    cls = seg_class[i]
    plt.plot(seg.t, np.array(seg.x)[:, 0], color=COLORS[cls])

plt.show()
Ejemplo n.º 8
0
def segment_hmm(df):

    # remove duplicated timestamps
    df = df.drop_duplicates(subset=['ts'], keep='first')

    # remove NANs from gaze
    df = df[~((df.gazeX.isnull()) | (df.gazeY.isnull()))]

    # HMM
    sample_class, segmentation, seg_class = nslr_hmm.classify_gaze(
        df.ts.values,
        df[['gazeX', 'gazeY']].values,
        structural_error=0.2,
        optimize_noise=False  # Assume 0.2 degree noise
    )

    # recreate a new signal using the segmented results.
    gaze_interp = interp1d(segmentation.t,
                           segmentation.x,
                           axis=0,
                           bounds_error=False)
    df['gazeX_s'], df['gazeY_s'] = gaze_interp(df.ts).T.copy()

    times = []
    xcoords = []
    ycoords = []
    for seg in segmentation.segments:
        times.append(seg.t)
        xcoords.append(np.array(seg.x)[:, 0])
        ycoords.append(np.array(seg.x)[:, 1])
    xcoords = pd.DataFrame(xcoords, columns=['x_begin', 'x_end'])
    ycoords = pd.DataFrame(ycoords, columns=['y_begin', 'y_end'])
    times = pd.DataFrame(times, columns=['ts_begin', 'ts_end'])
    segdf = pd.concat([xcoords, ycoords, times], axis=1).reset_index()
    segdf['segment_class'] = seg_class

    segdf_long = pd.melt(
        segdf[['index', 'ts_begin', 'ts_end', 'segment_class']],
        id_vars=['index', 'segment_class'])
    segdf_long['var'], segdf_long['timept'] = segdf_long['variable'].str.split(
        '_', 1).str
    segdf_long = segdf_long[[
        'index', 'segment_class', 'value', 'var', 'timept'
    ]].copy()
    segdf_long = segdf_long.pivot_table(
        index=['index', 'segment_class', 'timept'],
        columns=['var'],
        values='value').reset_index().copy()

    # merge consecutive segments of same class
    remove_border = segdf_long.duplicated(subset=['ts', 'segment_class'],
                                          keep=False)
    segdf_long = segdf_long[~remove_border]

    # recalculate segment index
    segdf_long['segment_index_old'] = segdf_long['index'].copy()
    segdf_long['segment_index'] = segdf_long.groupby('timept').cumcount() + 1

    segdf_long['segment_index'][
        segdf_long.timept == 'end'] = np.nan  # leave segment indices at begin
    segdf_long['segment_index'] = segdf_long.segment_index.bfill()

    segdf_long = segdf_long.pivot_table(
        index=['ts', 'segment_index'],
        columns=['timept'],
        values='segment_class').reset_index().copy()
    segdf_long.rename(columns={
        "segment_index": "begin_segment_index",
        "begin": "begin_seg_class",
        "end": "end_seg_class"
    },
                      inplace=True)

    df = df.reset_index(drop=True).merge(segdf_long, how='left').copy()

    return df
Ejemplo n.º 9
0
reestimate_observations = nslr_hmm.reestimate_observations_baum_welch

# Estimate new parameters based on the data
transition_probs, observation_model = reestimate_observations(session_features,
        # Setting either of these False can avoid
        # failure due to a class getting zero probability.
        estimate_transition_model=False,
        estimate_observation_model=True,
        # Enable to show an animated plot of the observation model estimation
        plot_process=True,
        )

# Classify one session using the new model(s)
t, eye, outliers = sessions[0]
sample_class, segmentation, seg_class = nslr_hmm.classify_gaze(t, eye, outliers=outliers,
        transition_probs=transition_probs,
        observation_model=observation_model)

# Plot the resulting classification
plt.figure()
COLORS = {
        nslr_hmm.FIXATION: 'blue',
        nslr_hmm.SACCADE: 'black',
        nslr_hmm.SMOOTH_PURSUIT: 'green',
        nslr_hmm.PSO: 'yellow',
}

plt.plot(t, eye[:,0], '.')
for i, seg in enumerate(segmentation.segments):
    cls = seg_class[i]
    plt.plot(seg.t, np.array(seg.x)[:,0], color=COLORS[cls])