#Minimum reads for PCM: 100 crit_min=nsmd.crit_min_reads(fpcm,reg,gene=None,minreads=100) #Normalized reads in pcm bigger than in wt. crit_frac = nsmd.crit_frac_compare(fwt,fpcm,reg) #Gene in expressed in pcm with alpha=1 crit_exp = nsmd.crit_expressed(fpcm,reg) #Preliminary candidates satisfying the 3 criteria. candidates = [g for g in nsmd.gene_loc if g in crit_min and g in crit_frac and g in crit_exp] #Test for center of mass is more expensive. Run it only for candidates. crit_cmass = nsmd.crit_cmass(fwt,fpcm,reg,gene=None,only=candidates,alpha=0.1) #Save results f = open(nsmd.full_path("candidates1.txt","results"),"w") for g in crit_cmass: f.write(g+"\n") f.close() #Save plots: fignames = [g+".jpg" for g in crit_cmass] nfignames = ["norm_"+n for n in fignames] nsmd.plot_pileup(fwt,fpcm,reg,gene=crit_cmass,show=False,filename=fignames) nsmd.plot_pileup(fwt,fpcm,reg,gene=crit_cmass,show=False,filename=nfignames,norm=True)
#Plot CG7294 for all the samples. list_pcm = ["pcm"+str(i)+"_chr2L.bam" for i in range(1,7)] list_wt = ["wt"+str(i)+"_chr2L.bam" for i in range(1,7)] list_out = ["CG7294_"+str(i)+".jpg" for i in range(1,7)] list_nout = ["CG7294_"+str(i)+"_norm.jpg" for i in range(1,7)] reg = "2L" g = "CG7294" import os os.chdir("..") import nsmd for fpcm,fwt,fout,fnout in zip(list_pcm,list_wt,list_out,list_nout): nsmd.plot_pileup(fwt,fpcm,reg,g,False,fout) nsmd.plot_pileup(fwt,fpcm,reg,g,False,fnout,True)