def randomKey(entropy): """ 256 bit number from equally strong urandom, user entropy, and timer parts """ if entropy.bit_length() < 250: print('Insufficient entropy parameter to generate key') return False from random import SystemRandom osrndi = SystemRandom() entstr = enc.encode(entropy, 16) + enc.encode(osrndi.getrandbits(512), 256) + str(clockrnd()) osrnd = SystemRandom(entstr) privkey = 0 while privkey < 1 or privkey > elip.N: privkey = enc.decode( hashlib.sha256(enc.encode(osrnd.getrandbits(512), 256)).digest(), 256) ^ osrnd.getrandbits(256) for lbit in xrange(clockrnd() % 64 + 64): clockstr = hex(clockrnd()) + str(clockrnd()) + entstr # Slice a moving 256 bit window out of SHA512 clock32 = hashlib.sha512(clockstr).digest()[1 + (lbit % 29):33 + (lbit % 29)] randhash = hashlib.sha512( enc.encode(osrnd.getrandbits(512), 256)).digest()[0 + (lbit % 31):32 + (lbit % 31)] privkey ^= enc.decode(randhash, 256) ^ enc.decode( clock32, 256) ^ osrndi.getrandbits(256) osrnd = SystemRandom( hashlib.sha512(clock32 + randhash + entstr).digest()) # reseed return privkey
def randomKey(entropy): """ 256 bit number from equally strong urandom, user entropy, and timer parts """ if entropy.bit_length() < 250: print('Insufficient entropy parameter to generate key') return False from random import SystemRandom osrndi = SystemRandom() entstr = enc.encode(entropy, 16) + enc.encode(osrndi.getrandbits(512), 256) + str(clockrnd()) osrnd = SystemRandom(entstr) privkey = 0 while privkey < 1 or privkey > elip.N: privkey = enc.decode(hashlib.sha256(enc.encode(osrnd.getrandbits(512), 256)).digest(), 256) ^ osrnd.getrandbits( 256) for lbit in xrange(clockrnd() % 64 + 64): clockstr = hex(clockrnd()) + str(clockrnd()) + entstr # Slice a moving 256 bit window out of SHA512 clock32 = hashlib.sha512(clockstr).digest()[1 + (lbit % 29): 33 + (lbit % 29)] randhash = hashlib.sha512(enc.encode(osrnd.getrandbits(512), 256)).digest()[ 0 + (lbit % 31): 32 + (lbit % 31)] privkey ^= enc.decode(randhash, 256) ^ enc.decode(clock32, 256) ^ osrndi.getrandbits(256) osrnd = SystemRandom(hashlib.sha512(clock32 + randhash + entstr).digest()) # reseed return privkey
def intermediate2privK(intermediate_passphrase_string): """ Steps to create new encrypted private keys given intermediate_passphrase_string from owner (so we have ownerentropy, and passpoint, but we do not have passfactor or the passphrase): """ #get ownerentropy and passpoint from the intermediate key leadingzbytes = len(re.match('^1*',intermediate_passphrase_string).group(0)) data = '\x00' * leadingzbytes + enc.encode(enc.decode(intermediate_passphrase_string,58),256) assert hashlib.sha256(hashlib.sha256(data[:-4]).digest()).digest().encode('hex')[:4] == data[-4:] decodedstring = data[1:-4] ownerentropy = decodedstring[7:15] passpoint = decodedstring[-33:] #1. Set flagbyte. #Turn on bit 0x20 if the Bitcoin address will be formed by hashing the compressed public key (optional, saves space, but many Bitcoin implementations aren't compatible with it) #Turn on bit 0x04 if ownerentropy contains a value for lotsequence. #(While it has no effect on the keypair generation process, the decryption process needs this flag to know how to process ownerentropy) flagbyte = chr(0b00100100) # 00 EC 1 compressed 00 future 1 has lotsequence 00 future #2. Generate 24 random bytes, call this seedb. Take SHA256(SHA256(seedb)) to yield 32 bytes, call this factorb. seedb = os.urandom(24) factorb = hashlib.sha256(hashlib.sha256(seedb).digest()).digest() #3. ECMultiply passpoint by factorb. pub = elip.base10_multiply(enc.decode(factorb, 256), enc.decode(passpoint, 256)) #4. Use the resulting EC point as a public key and hash it into a Bitcoin address using either compressed or uncompressed public key methodology # (specify which methodology is used inside flagbyte). # This is the generated Bitcoin address, call it generatedaddress. publicKey = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64)) generatedaddress = address.publicKey2Address(publicKey) ## Remember to add in the currency details here #5. Take the first four bytes of SHA256(SHA256(generatedaddress)) and call it addresshash. addresshash = hashlib.sha256(hashlib.sha256(generatedaddress).digest()).digest()[:4] #6. Now we will encrypt seedb. Derive a second key from passpoint using scrypt #Parameters: passphrase is passpoint provided from the first party (expressed in binary as 33 bytes). # salt is addresshash + ownerentropy, n=1024, r=1, p=1, length=64. The "+" operator is concatenation. encseedb = scrypt.hash(passpoint, addresshash + ownerentropy, 1024, 1, 1, 64) #7. Split the result into two 32-byte halves and call them derivedhalf1 and derivedhalf2. derivedhalf1 = encseedb[0:32] derivedhalf2 = encseedb[32:64] #8. Do AES256Encrypt(seedb[0...15] xor derivedhalf1[0...15], derivedhalf2), call the 16-byte result encryptedpart1 Aes = aes.Aes(derivedhalf2) encryptedpart1 = Aes.enc(enc.sxor(seedb[:16], derivedhalf1[:16])) #9. Do AES256Encrypt((encryptedpart1[8...15] + seedb[16...23]) xor derivedhalf1[16...31], derivedhalf2), call the 16-byte result encryptedpart2. # The "+" operator is concatenation. encryptedpart2 = Aes.enc(enc.sxor(encryptedpart1[8:16] + seedb[16:24], derivedhalf1[16:32])) #10. The encrypted private key is the Base58Check-encoded concatenation of the following, which totals 39 bytes without Base58 checksum: #0x01 0x43 + flagbyte + addresshash + ownerentropy + encryptedpart1[0...7] + encryptedpart2 inp_fmtd = '\x01\x43' + flagbyte + addresshash + ownerentropy + encryptedpart1[0:8] + encryptedpart2 check = hashlib.sha256(hashlib.sha256(inp_fmtd).digest()).digest()[:4] BIPKey = enc.b58encode(inp_fmtd + check) cnfrmcode = confirmationcode(flagbyte, addresshash, ownerentropy, factorb, derivedhalf1, derivedhalf2) return BIPKey, generatedaddress, cnfrmcode
def confirmcode(confirmationcode, passphrase): """ A confirmation tool, given a passphrase and a confirmation code, can recalculate the address, verify the address hash, and then assert the following: "It is confirmed that Bitcoin address address depends on this passphrase". To recalculate the address: """ #decode the confirmationcode to give addresshash, ownerentropy and encryptedpointb data = enc.b58decode(confirmationcode) checksum = data[-4:] hash = hashlib.sha256(hashlib.sha256(data[:-4]).digest()).digest()[:4] assert hash == checksum addresshash = data[6:10] ownerentropy = data[10:18] encryptedpointb = data[18:51] pointbx1 = encryptedpointb[1:17] pointbx2 = encryptedpointb[17:33] #1. Derive passfactor using scrypt with ownerentropy and the user's passphrase and use it to recompute passpoint passfactor = scrypt.hash(passphrase, ownerentropy, 16384, 8, 8, 32) pub = elip.base10_multiply(elip.G, enc.decode(passfactor, 256)) passpoint = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64)).decode('hex') #2. Derive decryption key for pointb using scrypt with passpoint, addresshash, and ownerentropy key = scrypt.hash(passpoint, addresshash + ownerentropy, 1024, 1, 1, 64) derivedhalf1 = key[0:32] derivedhalf2 = key[32:64] #3. Decrypt encryptedpointb to yield pointb Aes = aes.Aes(derivedhalf2) decryptedhalf1 = Aes.dec(pointbx1) decryptedhalf2 = Aes.dec(pointbx2) pointb = '0' + decryptedhalf1 + decryptedhalf2 pointb = binascii.unhexlify('%064x' % (long(binascii.hexlify(pointb), 16) ^ long(binascii.hexlify(derivedhalf1), 16))) #4. ECMultiply pointb by passfactor. Use the resulting EC point as a public key and hash it into address using either compressed or uncompressed public key # methodology as specified in flagbyte. pub = elip.base10_multiply(pointb, enc.decode(passfactor, 256)) print('pub[0] = ' + str(pub[0])) print('pub[1] = ' + str(pub[1])) publicKey = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64)) print('pubKey = ' + publicKey) generatedaddress = address.publicKey2Address(publicKey) print('generatedaddress = ' + generatedaddress) #print(hashlib.sha256(hashlib.sha256(generatedaddress).digest()).digest()[:4]) #print(addresshash) #assert hashlib.sha256(hashlib.sha256(generatedaddress).digest()).digest()[:4] == addresshash return
def confirmcode(confirmationcode, passphrase): """ A confirmation tool, given a passphrase and a confirmation code, can recalculate the address, verify the address hash, and then assert the following: "It is confirmed that Bitcoin address address depends on this passphrase". If applicable: "The lot number is lotnumber and the sequence number is sequencenumber." To recalculate the address: """ #decode the confirmationcode to give addresshash, ownerentropy and encryptedpointb data = enc.encode(enc.decode(confirmationcode, 58), 256) assert hashlib.sha256(hashlib.sha256( data[:-4]).digest()).digest()[:4] == data[-4:] addresshash = data[6:10] ownerentropy = data[10:18] encryptedpointb = data[18:51] pointbprefix = encryptedpointb[:1] pointbx1 = encryptedpointb[1:17] pointbx2 = encryptedpointb[17:] #1. Derive passfactor using scrypt with ownerentropy and the user's passphrase and use it to recompute passpoint prefactor = scrypt.hash(passphrase, ownerentropy[:4], 16384, 8, 8, 32) passfactor = hashlib.sha256( hashlib.sha256(prefactor + ownerentropy).digest()).digest() pub = elip.base10_multiply(elip.G, enc.decode(passfactor, 256)) passpoint = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64)).decode('hex') #2. Derive decryption key for pointb using scrypt with passpoint, addresshash, and ownerentropy key = scrypt.hash(passpoint, addresshash + ownerentropy, 1024, 1, 1, 64) derivedhalf1 = key[0:32] derivedhalf2 = key[32:64] #3. Decrypt encryptedpointb to yield pointb Aes = aes.Aes(derivedhalf2) pointb = pointbprefix + Aes.dec(pointbx1) + Aes.dec(pointbx2) print('pointb = ' + pointb.encode('hex')) #4. ECMultiply pointb by passfactor. Use the resulting EC point as a public key and hash it into address using either compressed or uncompressed public key # methodology as specifid in flagbyte. pub = elip.base10_multiply(enc.decode(passfactor, 256), enc.decode(pointb, 256)) privK = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64)) generatedaddress = address.publicKey2Address(privK) #print(generatedaddress) #print(hashlib.sha256(hashlib.sha256(generatedaddress).digest()).digest()[:4]) #print(addresshash) #assert hashlib.sha256(hashlib.sha256(generatedaddress).digest()).digest()[:4] == addresshash return
def confirmationcode(flagbyte, addresshash, ownerentropy, factorb, derivedhalf1, derivedhalf2): """ The party generating the Bitcoin address has the option to return a confirmation code back to owner which allows owner to independently verify that he has been given a Bitcoin address that actually depends on his passphrase, and to confirm the lot and sequence numbers (if applicable). This protects owner from being given a Bitcoin address by the second party that is unrelated to the key derivation and possibly spendable by the second party. If a Bitcoin address given to owner can be successfully regenerated through the confirmation process, owner can be reasonably assured that any spending without the passphrase is infeasible. This confirmation code is 75 characters starting with "cfrm38". To generate it, we need flagbyte, addresshash, ownerentropy, factorb, derivedhalf1 and derivedhalf2 from the original encryption operation. """ #1. ECMultiply factorb by G, call the result pointb. The result is 33 bytes (compressed key format). pub = elip.base10_multiply(elip.G, enc.decode(factorb, 256)) pointb = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64))[:33] #2. The first byte is 0x02 or 0x03. XOR it by (derivedhalf2[31] & 0x01), call the resulting byte pointbprefix. pointbprefix = enc.sxor(pointb[:1], str(derivedhalf2[31]) + '\x01') #3. Do AES256Encrypt(pointb[1...16] xor derivedhalf1[0...15], derivedhalf2) and call the result pointbx1. Aes = aes.Aes(derivedhalf2) pointbx1 = Aes.enc(enc.sxor(pointb[1:17], derivedhalf1[0:16])) #4. Do AES256Encrypt(pointb[17...32] xor derivedhalf1[16...31], derivedhalf2) and call the result pointbx2. pointbx2 = Aes.enc(enc.sxor(pointb[17:33], derivedhalf1[16:32])) #5. Concatenate pointbprefix + pointbx1 + pointbx2 (total 33 bytes) and call the result encryptedpointb. encryptedpointb = pointbprefix + pointbx1 + pointbx2 #6. The result is a Base58Check-encoded concatenation of the following: #0x64 0x3B 0xF6 0xA8 0x9A + flagbyte + addresshash + ownerentropy + encryptedpointb inp_fmtd = '\x64\x3B\xF6\xA8\x9A' + flagbyte + addresshash + ownerentropy + encryptedpointb check = hashlib.sha256(hashlib.sha256(inp_fmtd).digest()).digest()[:4] return enc.b58encode(inp_fmtd + check)
def base58Encode(r160, magicbyte=0, prefix=1, length=0): """ Base58 encoding w leading zero compact """ from re import match as re_match inp_fmtd = chr(int(magicbyte if magicbyte < 255 else 255)) + r160 leadingzbytes = len(re_match('^\x00*', inp_fmtd).group(0)) checksum = hashlib.sha256(hashlib.sha256(inp_fmtd).digest()).digest()[:4] return str(prefix) * leadingzbytes + enc.encode(enc.decode(inp_fmtd + checksum, 256), 58, 0)
def privKeyVersion(privK): """ determine what sort of private key we have convert it to raw (base 10) and return No need to alert to a bad checksum as this should have already been checked in the input check """ isWIF, comment = isWif(privK) if isWIF is True: privK = enc.decode(enc.encode(enc.decode(privK, 58), 256)[1:-5], 256) elif isHex(privK): privK = enc.decode(privK, 16) elif isBase64(privK): privK = privK.decode('base64', 'strict') elif isBase6(privK): privK = privK.decode('base6', 'strict') return privK
def genAll(bip=False): import random import num.rand as rand import system.address as address import num.enc as enc import encrypt.bip38 as bip38 import hashlib genFile = open('allKeys', 'w') genFile.close() conn = db.open() c = conn.cursor() c.execute('select currency from eskimo_currencies order by currency;') currencies = c.fetchall() for cur in currencies: c.execute('select v.version,v.prefix,v.length,c.id,c.longName from eskimo_versions as v inner join eskimo_currencies as c on c.version = v.id where c.currency=?;', (cur[0].upper(),)) version = c.fetchone() if version is None: continue #randomly choose a prefix if multiples exist prefixes = version[1].split('|') prefix = prefixes[random.randint(0, (len(prefixes)-1))] #generate the private and public keys privateKey = rand.randomKey(random.getrandbits(512)) privK256 = enc.encode(privateKey, 256, 32) WIF = address.privateKey2Wif(privateKey, version[0], prefix, version[2]) publicAddress = address.publicKey2Address(address.privateKey2PublicKey(privateKey), version[0], prefix, version[2]) if bip is True: BIP = bip38.encrypt(privK256, publicAddress, 'biptest', 1) privK, addresshash = bip38.decrypt(BIP, 'biptest', 1) #decode the privK from base 256 privK = enc.decode(privK, 256) #hash the address to check the decryption addr = address.publicKey2Address(address.privateKey2PublicKey(privK), version[0], prefix, version[2]) fail = False if hashlib.sha256(hashlib.sha256(addr).digest()).digest()[0:4] != addresshash: fail = True reason = 'Address Hash doesn\'t match' if privK != privateKey: fail = True reason = 'Private Keys don\'t match' BIPWIF = address.privateKey2Wif(privK, version[0], prefix, version[2]) with open('allKeys', 'a') as outfile: outfile.write('####### ' + cur[0].upper() + ' - ' + version[4] + ' #######\n') outfile.write('Address = ' + publicAddress + '\n') outfile.write('WIF = ' + WIF + '\n') if bip is True: outfile.write('BIP = ' + BIP + '\n') if fail is True: outfile.write('BIP Failed - ' + reason + '\n') else: outfile.write('BIPWIF = ' + BIPWIF + '\n') outfile.write('\n') outfile.close() db.close(conn) return True
def dumpPrivKey(address): ''' retrieve private key from database for given address option to decrypt BIP0038 encrypted keys display as base58 and WIF ''' conn = db.open() c = conn.cursor() #get the needed data from the database c.execute('select p.id,p.privK,v.version,v.prefix,v.length,c.longName from eskimo_privK as p inner join eskimo_master as m on p.id = m.privK inner join eskimo_addresses as a on a.id = m.address inner join eskimo_currencies as c on p.currency = c.id inner join eskimo_versions as v on c.version = v.id where a.address=?;', (address.encode('base64', 'strict'),)) privData = c.fetchone() if privData is None: print(address + ' was not found') return False #check if the private key is bip encoded and get the password reminder if it is c.execute('select reminder, p from eskimo_bip where privK=?;', (privData[0],)) bip = c.fetchone() if bip is None: isBip = False else: isBip = True reminder = bip[0] p = bip[1] privK = privData[1].decode('base64', 'strict') #ask if the user wants to decrypt a bip encrypted key if isBip: print('The private key found is BIP0038 encrypted.') decrypt = raw_input('Would you like to decrypt it? (n) ').lower().strip() if decrypt == 'y': bipPass1 = 'pass1' bipPass2 = 'pass2' while bipPass1 != bipPass2 or len(bipPass1) < 1: bipPass1 = inp.secure_passphrase('Enter your BIP0038 passphrase ' + ('(' + bip[0] + ')' if bip[0] != '' else '')) bipPass2 = inp.secure_passphrase('Re-enter your passphrase to confirm') if bipPass1 != bipPass2: print('The passphrases entered did not match.') elif len(bipPass1) < 1: print('No passphrase was entered') #decrypt the private key using the supplied password privK, addresshash = bip38.decrypt(privK, bipPass1, p) #decode the privK from base 256 privK = enc.decode(privK, 256) #hash the address to check the decryption address = publicKey2Address(privateKey2PublicKey(privK), privData[2], privData[3], privData[4]) if hashlib.sha256(hashlib.sha256(address).digest()).digest()[0:4] != addresshash: print('\nUnable to decrypt.') print('Please try again with a different passphrase.') return False else: print('\n' + privData[5] + ' Address = ' + str(address)) print('\nBIP0038 encrypted private key : ' + privK) return True print('\n' + privData[5] + ' Address = ' + str(address)) print('\nPrivate key : ') print('HEX : ' + enc.encode(privK, 16)) print('WIF : ' + privateKey2Wif(privK, privData[2], privData[3], privData[4])) return True
def base58Encode(r160, magicbyte=0, prefix=1, length=0): """ Base58 encoding w leading zero compact """ from re import match as re_match inp_fmtd = chr(int(magicbyte if magicbyte < 255 else 255)) + r160 leadingzbytes = len(re_match('^\x00*', inp_fmtd).group(0)) checksum = hashlib.sha256(hashlib.sha256(inp_fmtd).digest()).digest()[:4] return str(prefix) * leadingzbytes + enc.encode( enc.decode(inp_fmtd + checksum, 256), 58, 0)
def intermediate(passphrase): """ Encrypting a private key with EC multiplication offers the ability for someone to generate encrypted keys knowing only an EC point derived from the original passphrase and some salt generated by the passphrase's owner, and without knowing the passphrase itself. Only the person who knows the original passphrase can decrypt the private key. A code known as an intermediate code conveys the information needed to generate such a key without knowledge of the passphrase. This methodology does not offer the ability to encrypt a known private key - this means that the process of creating encrypted keys is also the process of generating new addresses. On the other hand, this serves a security benefit for someone possessing an address generated this way: if the address can be recreated by decrypting its private key with a passphrase, and it's a strong passphrase one can be certain only he knows himself, then he can safely conclude that nobody could know the private key to that address. The person who knows the passphrase and who is the intended beneficiary of the private keys is called the owner. He will generate one or more "intermediate codes", which are the first factor of a two-factor redemption system, and will give them to someone else we'll call printer, who generates a key pair with an intermediate code can know the address and encrypted private key, but cannot decrypt the private key without the original passphrase. An intermediate code should, but is not required to, embed a printable "lot" and "sequence" number for the benefit of the user. The proposal forces these lot and sequence numbers to be included in any valid private keys generated from them. An owner who has requested multiple private keys to be generated for him will be advised by applications to ensure that each private key has a unique lot and sequence number consistent with the intermediate codes he generated. These mainly help protect owner from potential mistakes and/or attacks that could be made by printer. The "lot" and "sequence" number are combined into a single 32 bit number. 20 bits are used for the lot number and 12 bits are used for the sequence number, such that the lot number can be any decimal number between 0 and 1048575, and the sequence number can be any decimal number between 0 and 4095. For programs that generate batches of intermediate codes for an owner, it is recommended that lot numbers be chosen at random within the range 100000-999999 and that sequence numbers are assigned starting with 1. We are not using Lot Sequence and sequence so some changes are made to the instructions """ #1. Generate 8 random bytes, call them ownerentropy. ownerentropy = os.urandom(8) #4. Derive a key from the passphrase using scrypt #Parameters: passphrase is the passphrase itself encoded in UTF-8. salt is ownersalt. n=16384, r=8, p=8, length=32. #Call the resulting 32 bytes passfactor. passfactor = scrypt.hash(passphrase, ownerentropy, 16384, 8, 8, 32) #6. Compute the elliptic curve point G * passfactor, and convert the result to compressed notation (33 bytes). Call this passpoint. #Compressed notation is used for this purpose regardless of whether the intent is to create Bitcoin addresses with or without compressed public keys. pub = elip.base10_multiply(elip.G, enc.decode(passfactor, 256)) passpoint = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64)).decode('hex') #7. Convey ownerentropy and passpoint to the party generating the keys, along with a checksum to ensure integrity. #The following Base58Check-encoded format is recommended for this purpose: magic bytes "2C E9 B3 E1 FF 39 E2 53" followed by ownerentropy, and then passpoint. #The resulting string will start with the word "passphrase" due to the constant bytes, #will be 72 characters in length, and encodes 49 bytes (8 bytes constant + 8 bytes ownerentropy + 33 bytes passpoint). #The checksum is handled in the Base58Check encoding. The resulting string is called intermediate_passphrase_string. input = '\x2C\xE9\xB3\xE1\xFF\x39\xE2\x53' + ownerentropy + passpoint checksum = hashlib.sha256(hashlib.sha256(input).digest()).digest()[:4] intermediate_passphrase_string = enc.b58encode(input + checksum) return intermediate_passphrase_string
def decBIPKey(encrypted_privK, passphrase): """ Decrypt an encrypted Private key Show the corresponding public address """ privK, addresshash = bip38.decrypt(str(encrypted_privK), str(passphrase)) privK = enc.decode(privK, 256) # calculate the addresses from the key bPublicAddress, sPublicAddress = address.publicKey2Address( address.privateKey2PublicKey(privK)) #check our generated address against the address hash from BIP if hashlib.sha256( hashlib.sha256(bPublicAddress + sPublicAddress).digest()).digest( )[0:4] != addresshash: return False, False, False else: return address.privateKey2Wif(privK), bPublicAddress, sPublicAddress
def decBIPKey(encrypted_privK, passphrase, currency): """ Decrypt an encrypted Private key Show the corresponding public address """ #using the currencies.json file, get the currency data with open('res/json/currencies.json', 'r') as dataFile: currencies = json.load(dataFile) for cur in currencies: if cur['currency'] == currency: break #randomly choose a prefix if multiples exist prefixes = cur['prefix'].split('|') prefix = prefixes[random.randint(0, (len(prefixes)-1))] #decrypt the BIP key PrivK, Addresshash = bip38.decrypt(str(encrypted_privK), str(passphrase), 8) PrivK = enc.decode(PrivK, 256) #calculate the address from the key publicAddress = address.publicKey2Address(address.privateKey2PublicKey(PrivK), int(cur['version']), prefix, int(cur['length'])) #check our generated address against the address hash from BIP if hashlib.sha256(hashlib.sha256(publicAddress).digest()).digest()[0:4] != Addresshash: return False, False else: return address.privateKey2Wif(PrivK, cur['version'], prefix, cur['length']), publicAddress
def dumpPrivKey(address): """ retrieve private key from database for given address option to decrypt BIP0038 encrypted keys display as base58 and WIF """ conn = db.open() c = conn.cursor() # get the needed data from the database c.execute( "select p.id,p.privK,v.version,v.prefix,v.length,c.longName from inuit_privK as p inner join inuit_master as m on p.id = m.privK inner join inuit_addresses as a on a.id = m.address inner join inuit_currencies as c on p.currency = c.id inner join inuit_versions as v on c.version = v.id where a.address=?;", (address.encode("base64", "strict"),), ) privData = c.fetchone() if privData is None: print(address + " was not found") return False # check if the private key is bip encoded and get the password reminder if it is c.execute("select reminder, p from inuit_bip where privK=?;", (privData[0],)) bip = c.fetchone() if bip is None: isBip = False else: isBip = True reminder = bip[0] p = bip[1] privK = privData[1].decode("base64", "strict") # ask if the user wants to decrypt a bip encrypted key if isBip: print("The private key found is BIP0038 encrypted.") decrypt = raw_input("Would you like to decrypt it? (n) ").lower().strip() if decrypt == "y": bipPass1 = "pass1" bipPass2 = "pass2" while bipPass1 != bipPass2 or len(bipPass1) < 1: bipPass1 = inp.secure_passphrase( "Enter your BIP0038 passphrase " + ("(" + bip[0] + ")" if bip[0] != "" else "") ) bipPass2 = inp.secure_passphrase("Re-enter your passphrase to confirm") if bipPass1 != bipPass2: print("The passphrases entered did not match.") elif len(bipPass1) < 1: print("No passphrase was entered") # decrypt the private key using the supplied password privK, addresshash = bip38.decrypt(privK, bipPass1, p) # decode the privK from base 256 privK = enc.decode(privK, 256) # hash the address to check the decryption address = publicKey2Address(privateKey2PublicKey(privK), privData[2], privData[3], privData[4]) if hashlib.sha256(hashlib.sha256(address).digest()).digest()[0:4] != addresshash: print("\nUnable to decrypt.") print("Please try again with a different passphrase.") return False else: print("\n" + privData[5] + " Address = " + str(address)) print("\nBIP0038 encrypted private key : " + privK) return True print("\n" + privData[5] + " Address = " + str(address)) print("\nPrivate key : ") print("HEX : " + enc.encode(privK, 16)) print("WIF : " + privateKey2Wif(privK, privData[2], privData[3], privData[4])) return True
def intermediate2privK(intermediate_passphrase_string): """ Steps to create new encrypted private keys given intermediate_passphrase_string from owner (so we have ownerentropy, and passpoint, but we do not have passfactor or the passphrase): """ #get ownerentropy and passpoint from the intermediate key #check the checksum en route decstring = enc.b58decode(intermediate_passphrase_string) checksum = decstring[-4:] if checksum != hashlib.sha256(hashlib.sha256( decstring[:-4]).digest()).digest()[:4]: return False, 'checksum' decodedstring = decstring[:-4] ownerentropy = decodedstring[8:16] passpoint = decodedstring[-33:] print(passpoint) #1. Set flagbyte. #Turn on bit 0x20 if the Bitcoin address will be formed by hashing the compressed public key (optional, saves space, but many Bitcoin implementations aren't compatible with it) #Turn on bit 0x04 if ownerentropy contains a value for lotsequence. #(While it has no effect on the keypair generation process, the decryption process needs this flag to know how to process ownerentropy) flagbyte = chr( 0b00100000 ) # 00 EC 1 compressed 00 future 0 has no lotsequence 00 future #2. Generate 24 random bytes, call this seedb. Take SHA256(SHA256(seedb)) to yield 32 bytes, call this factorb. seedb = os.urandom(24) seedb = b'ABCDEFGHIJKLMNOPQRSTUVWX' #seedb = bytearray(b'ABCDEFGHIJKLMNOPQRSTUVWX') #for c in seedb: print(c) factorb = hashlib.sha256(hashlib.sha256(seedb).digest()).digest() #3. ECMultiply passpoint by factorb. pub = elip.base10_multiply(enc.decode(passpoint, 256), enc.decode(factorb, 256)) #4. Use the resulting EC point as a public key and hash it into a Bitcoin address using either compressed or uncompressed public key methodology # (specify which methodology is used inside flagbyte). # This is the generated Bitcoin address, call it generatedaddress. publicKey = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64)) generatedaddress = address.publicKey2Address( publicKey) ## TODO Remember to add in the currency details here #5. Take the first four bytes of SHA256(SHA256(generatedaddress)) and call it addresshash. addresshash = hashlib.sha256( hashlib.sha256(generatedaddress).digest()).digest()[:4] #6. Now we will encrypt seedb. Derive a second key from passpoint using scrypt #Parameters: passphrase is passpoint provided from the first party (expressed in binary as 33 bytes). # salt is addresshash + ownerentropy, n=1024, r=1, p=1, length=64. The "+" operator is concatenation. encseedb = scrypt.hash(passpoint, addresshash + ownerentropy, 1024, 1, 1, 64) #7. Split the result into two 32-byte halves and call them derivedhalf1 and derivedhalf2. derivedhalf1 = encseedb[0:32] derivedhalf2 = encseedb[32:64] #8. Do AES256Encrypt(seedb[0...15] xor derivedhalf1[0...15], derivedhalf2), call the 16-byte result encryptedpart1 Aes = aes.Aes(derivedhalf2) encryptedpart1 = Aes.enc(enc.sxor(seedb[:16], derivedhalf1[:16])) #9. Do AES256Encrypt((encryptedpart1[8...15] + seedb[16...23]) xor derivedhalf1[16...31], derivedhalf2), call the 16-byte result encryptedpart2. # The "+" operator is concatenation. encryptedpart2 = Aes.enc( enc.sxor(encryptedpart1[8:16] + seedb[16:24], derivedhalf1[16:32])) #10. The encrypted private key is the Base58Check-encoded concatenation of the following, which totals 39 bytes without Base58 checksum: #0x01 0x43 + flagbyte + addresshash + ownerentropy + encryptedpart1[0...7] + encryptedpart2 input = '\x01\x43' + flagbyte + addresshash + ownerentropy + encryptedpart1[ 0:8] + encryptedpart2 checksum = hashlib.sha256(hashlib.sha256(input).digest()).digest()[:4] BIPKey = enc.b58encode(input + checksum) cnfrmcode = confirmationcode(flagbyte, addresshash, ownerentropy, factorb, derivedhalf1, derivedhalf2) return BIPKey, generatedaddress, cnfrmcode
def confirmcode(confirmationcode, passphrase): """ A confirmation tool, given a passphrase and a confirmation code, can recalculate the address, verify the address hash, and then assert the following: "It is confirmed that Bitcoin address address depends on this passphrase". If applicable: "The lot number is lotnumber and the sequence number is sequencenumber." To recalculate the address: """ #decode the confirmationcode to give addresshash, ownerentropy and encryptedpointb data = enc.encode(enc.decode(confirmationcode,58),256) assert hashlib.sha256(hashlib.sha256(data[:-4]).digest()).digest()[:4] == data[-4:] addresshash = data[6:10] ownerentropy = data[10:18] encryptedpointb = data[18:51] pointbprefix = encryptedpointb[:1] pointbx1 = encryptedpointb[1:17] pointbx2 = encryptedpointb[17:] #1. Derive passfactor using scrypt with ownerentropy and the user's passphrase and use it to recompute passpoint prefactor = scrypt.hash(passphrase, ownerentropy[:4], 16384, 8, 8, 32) passfactor = hashlib.sha256(hashlib.sha256(prefactor + ownerentropy).digest()).digest() pub = elip.base10_multiply(elip.G, enc.decode(passfactor, 256)) passpoint = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64)).decode('hex') #2. Derive decryption key for pointb using scrypt with passpoint, addresshash, and ownerentropy key = scrypt.hash(passpoint, addresshash + ownerentropy, 1024, 1, 1, 64) derivedhalf1 = key[0:32] derivedhalf2 = key[32:64] #3. Decrypt encryptedpointb to yield pointb Aes = aes.Aes(derivedhalf2) pointb = pointbprefix + Aes.dec(pointbx1) + Aes.dec(pointbx2) print('pointb = ' + pointb.encode('hex')) #4. ECMultiply pointb by passfactor. Use the resulting EC point as a public key and hash it into address using either compressed or uncompressed public key # methodology as specifid in flagbyte. pub = elip.base10_multiply(enc.decode(passfactor, 256), enc.decode(pointb, 256)) privK = ('0' + str(2 + (pub[1] % 2)) + enc.encode(pub[0], 16, 64)) generatedaddress = address.publicKey2Address(privK) #print(generatedaddress) #print(hashlib.sha256(hashlib.sha256(generatedaddress).digest()).digest()[:4]) #print(addresshash) #assert hashlib.sha256(hashlib.sha256(generatedaddress).digest()).digest()[:4] == addresshash return #Decryption # #Collect encrypted private key and passphrase from user. #Derive passfactor using scrypt with ownerentropy and the user's passphrase and use it to recompute passpoint #Derive decryption key for seedb using scrypt with passpoint, addresshash, and ownersalt #Decrypt encryptedpart2 using AES256Decrypt to yield the last 8 bytes of seedb and the last 8 bytes of encryptedpart1. #Decrypt encryptedpart1 to yield the remainder of seedb. #Use seedb to compute factorb. #Multiply passfactor by factorb mod N to yield the private key associated with generatedaddress. #Convert that private key into a Bitcoin address, honoring the compression preference specified in the encrypted key. #Hash the Bitcoin address, and verify that addresshash from the encrypted private key record matches the hash. If not, report that the passphrase entry was incorrect. #