Ejemplo n.º 1
0
    def test_raise_in_try(self):
        @njit
        def udt(x):
            try:
                print("A")
                if x:
                    raise MyError("my_error")
                print("B")
            except:  # noqa: E722
                print("C")
                return 321
            return 123

        # case 1
        with captured_stdout() as stdout:
            res = udt(True)

        self.assertEqual(
            stdout.getvalue().split(),
            ["A", "C"],
        )
        self.assertEqual(res, 321)

        # case 2
        with captured_stdout() as stdout:
            res = udt(False)

        self.assertEqual(
            stdout.getvalue().split(),
            ["A", "B"],
        )
        self.assertEqual(res, 123)
Ejemplo n.º 2
0
    def test_catch_exception(self):
        @njit
        def udt(x):
            try:
                print("A")
                if x:
                    raise ZeroDivisionError("321")
                print("B")
            except Exception:
                print("C")
            print("D")

        # case 1
        with captured_stdout() as stdout:
            udt(True)

        self.assertEqual(
            stdout.getvalue().split(),
            ["A", "C", "D"],
        )

        # case 2
        with captured_stdout() as stdout:
            udt(False)

        self.assertEqual(
            stdout.getvalue().split(),
            ["A", "B", "D"],
        )
Ejemplo n.º 3
0
    def test_return_in_catch(self):
        @njit
        def udt(x):
            try:
                print("A")
                if x:
                    raise ZeroDivisionError
                print("B")
                r = 123
            except Exception:
                print("C")
                r = 321
                return r
            print("D")
            return r

        # case 1
        with captured_stdout() as stdout:
            res = udt(True)

        self.assertEqual(
            stdout.getvalue().split(),
            ["A", "C"],
        )
        self.assertEqual(res, 321)

        # case 2
        with captured_stdout() as stdout:
            res = udt(False)

        self.assertEqual(
            stdout.getvalue().split(),
            ["A", "B", "D"],
        )
        self.assertEqual(res, 123)
Ejemplo n.º 4
0
    def check_compare(self, cfunc, pyfunc, *args, **kwargs):
        with captured_stdout() as stdout:
            pyfunc(*args, **kwargs)
        expect = stdout.getvalue()

        with captured_stdout() as stdout:
            cfunc(*args, **kwargs)
        got = stdout.getvalue()
        self.assertEqual(expect, got, msg="args={} kwargs={}".format(args, kwargs))
Ejemplo n.º 5
0
    def check_same_semantic(self, func):
        """Ensure same semantic with non-jitted code
        """
        jitted = njit(func)
        with captured_stdout() as got:
            jitted()

        with captured_stdout() as expect:
            func()

        self.assertEqual(got.getvalue(), expect.getvalue())
Ejemplo n.º 6
0
    def test_print_vararg(self):
        # Test *args support for print().  This is desired since
        # print() can use a dedicated IR node.
        pyfunc = print_vararg
        cfunc = jit(nopython=True)(pyfunc)
        with captured_stdout():
            cfunc(1, (2, 3), (4, 5j))
            self.assertEqual(sys.stdout.getvalue(), "1 (2, 3) 4 5j\n")

        pyfunc = print_string_vararg
        cfunc = jit(nopython=True)(pyfunc)
        with captured_stdout():
            cfunc(1, (2, 3), (4, 5j))
            self.assertEqual(sys.stdout.getvalue(), "1 hop! (2, 3) 4 5j\n")
Ejemplo n.º 7
0
    def test_print_values(self):
        """
        Test printing a single argument value.
        """
        pyfunc = print_value

        def check_values(typ, values):
            cr = compile_isolated(pyfunc, (typ,))
            cfunc = cr.entry_point
            for val in values:
                with captured_stdout():
                    cfunc(val)
                    self.assertEqual(sys.stdout.getvalue(), str(val) + '\n')

        # Various scalars
        check_values(types.int32, (1, -234))
        check_values(types.int64, (1, -234,
                                   123456789876543210, -123456789876543210))
        check_values(types.uint64, (1, 234,
                                   123456789876543210, 2**63 + 123))
        check_values(types.boolean, (True, False))
        check_values(types.float64, (1.5, 100.0**10.0, float('nan')))
        check_values(types.complex64, (1+1j,))
        check_values(types.NPTimedelta('ms'), (np.timedelta64(100, 'ms'),))

        cr = compile_isolated(pyfunc, (types.float32,))
        cfunc = cr.entry_point
        with captured_stdout():
            cfunc(1.1)
            # Float32 will lose precision
            got = sys.stdout.getvalue()
            expect = '1.10000002384'
            self.assertTrue(got.startswith(expect))
            self.assertTrue(got.endswith('\n'))

        # NRT-enabled type
        with self.assertNoNRTLeak():
            x = [1, 3, 5, 7]
            with self.assertRefCount(x):
                check_values(types.List(types.int32), (x,))

        # Array will have to use object mode
        arraytype = types.Array(types.int32, 1, 'C')
        cr = compile_isolated(pyfunc, (arraytype,), flags=enable_pyobj_flags)
        cfunc = cr.entry_point
        with captured_stdout():
            cfunc(np.arange(10, dtype=np.int32))
            self.assertEqual(sys.stdout.getvalue(),
                             '[0 1 2 3 4 5 6 7 8 9]\n')
    def _test_usecase2to5(self, pyfunc, dtype):
        array = self._setup_usecase2to5(dtype)
        record_type = numpy_support.from_dtype(dtype)
        cres = compile_isolated(pyfunc, (record_type[:], types.intp))
        cfunc = cres.entry_point

        with captured_stdout():
            pyfunc(array, len(array))
            expect = sys.stdout.getvalue()

        with captured_stdout():
            cfunc(array, len(array))
            got = sys.stdout.getvalue()

        self.assertEqual(expect, got)
Ejemplo n.º 9
0
 def test_cuda_detect(self):
     # exercise the code path
     with captured_stdout() as out:
         cuda.detect()
     output = out.getvalue()
     self.assertIn('Found', output)
     self.assertIn('CUDA devices', output)
Ejemplo n.º 10
0
    def test_inspect_types_pretty(self):
        @jit
        def foo(a, b):
            return a + b

        foo(1, 2)

        # Exercise the method, dump the output
        with captured_stdout():
            ann = foo.inspect_types(pretty=True)

        # ensure HTML <span> is found in the annotation output
        for k, v in ann.ann.items():
            span_found = False
            for line in v['pygments_lines']:
                if 'span' in line[2]:
                    span_found = True
            self.assertTrue(span_found)

        # check that file+pretty kwarg combo raises
        with self.assertRaises(ValueError) as raises:
            foo.inspect_types(file=StringIO(), pretty=True)

        self.assertIn("`file` must be None if `pretty=True`",
                      str(raises.exception))
Ejemplo n.º 11
0
    def test_ex_inferred_list_jit(self):
        with captured_stdout():

            # magictoken.ex_inferred_list_jit.begin
            from numba import njit
            from numba.typed import List

            @njit
            def foo():
                # Instantiate a typed-list
                l = List()
                # Append a value to it, this will set the type to int32/int64
                # (depending on platform)
                l.append(42)
                # The usual list operations, getitem, pop and length are
                # supported
                print(l[0])  # 42
                l[0] = 23
                print(l[0])  # 23
                print(len(l))  # 1
                l.pop()
                print(len(l))  # 0
                return l

            foo()
Ejemplo n.º 12
0
    def test_ex_inferred_list(self):
        with captured_stdout():
            # magictoken.ex_inferred_list.begin
            from numba import njit
            from numba.typed import List

            @njit
            def foo(mylist):
                for i in range(10, 20):
                    mylist.append(i)
                return mylist

            # Instantiate a typed-list, outside of a jit context
            l = List()
            # Append a value to it, this will set the type to int32/int64
            # (depending on platform)
            l.append(42)
            # The usual list operations, getitem, pop and length are supported
            print(l[0])  # 42
            l[0] = 23
            print(l[0])  # 23
            print(len(l))  # 1
            l.pop()
            print(len(l))  # 0

            # And you can use the typed-list as an argument for a jit compiled
            # function
            l = foo(l)
            print(len(l))  # 10

            # You can also directly construct a typed-list from an existing
            # Python list
            py_list = [2, 3, 5]
            numba_list = List(py_list)
            print(len(numba_list))  # 3
Ejemplo n.º 13
0
def assert_auto_offloading(parfor_offloaded=1, parfor_offloaded_failure=0):
    """
    If ``parfor_offloaded`` is not provided this context_manager
    will check for 1 occurrance of success message. Developers
    can always specify how many parfor offload success message
    is expected.
    If ``parfor_offloaded_failure`` is not provided the default
    behavior is to expect 0 failure message, in other words, we
    expect all parfors present in the code to be successfully
    offloaded to GPU.
    """
    old_debug = config.DEBUG
    config.DEBUG = 1

    with captured_stdout() as stdout:
        yield

    config.DEBUG = old_debug

    got_parfor_offloaded = stdout.getvalue().count("Parfor offloaded to")
    assert parfor_offloaded == got_parfor_offloaded, (
        "Expected %d parfor(s) to be auto offloaded, instead got %d parfor(s) auto offloaded"
        % (parfor_offloaded, got_parfor_offloaded))

    got_parfor_offloaded_failure = stdout.getvalue().count(
        "Failed to offload parfor to")
    assert parfor_offloaded_failure == got_parfor_offloaded_failure, (
        "Expected %d parfor(s) to be not auto offloaded, instead got %d parfor(s) not auto offloaded"
        % (parfor_offloaded_failure, got_parfor_offloaded_failure))
Ejemplo n.º 14
0
 def test_print_empty(self):
     pyfunc = print_empty
     cr = compile_isolated(pyfunc, ())
     cfunc = cr.entry_point
     with captured_stdout():
         cfunc()
         self.assertEqual(sys.stdout.getvalue(), "\n")
Ejemplo n.º 15
0
    def test_with_dppy_context_cpu(self):
        @njit
        def nested_func(a, b):
            np.sin(a, b)

        @njit
        def func(b):
            a = np.ones((64), dtype=np.float64)
            nested_func(a, b)

        config.DEBUG = 1
        expected = np.ones((64), dtype=np.float64)
        got_cpu = np.ones((64), dtype=np.float64)

        with captured_stdout() as got_cpu_message:
            device = dpctl.SyclDevice("opencl:cpu")
            with dppy.offload_to_sycl_device(device):
                func(got_cpu)

        config.DEBUG = 0
        func(expected)

        np.testing.assert_array_equal(expected, got_cpu)
        self.assertTrue(
            "Parfor offloaded to opencl:cpu" in got_cpu_message.getvalue())
Ejemplo n.º 16
0
    def test_ex_typed_dict_njit(self):
        with captured_stdout():
            # magictoken.ex_typed_dict_njit.begin
            import numpy as np
            from numba import njit
            from numba.core import types
            from numba.typed import Dict

            # Make array type.  Type-expression is not supported in jit
            # functions.
            float_array = types.float64[:]

            @njit
            def foo():
                # Make dictionary
                d = Dict.empty(
                    key_type=types.unicode_type,
                    value_type=float_array,
                )
                # Fill the dictionary
                d["posx"] = np.arange(3).astype(np.float64)
                d["posy"] = np.arange(3, 6).astype(np.float64)
                return d

            d = foo()
            # Print the dictionary
            print(d)  # Out: {posx: [0. 1. 2.], posy: [3. 4. 5.]}
            # magictoken.ex_typed_dict_njit.end
        np.testing.assert_array_equal(d['posx'], [0, 1, 2])
        np.testing.assert_array_equal(d['posy'], [3, 4, 5])
Ejemplo n.º 17
0
    def test_for_loop(self):
        @njit
        def foo(n):

            for i in range(n):
                try:
                    if i > 5:
                        raise ValueError
                except:  # noqa: E722
                    print("CAUGHT")
            else:
                try:
                    try:
                        try:
                            if i > 5:
                                raise ValueError
                        except:  # noqa: E722
                            print("CAUGHT1")
                            raise ValueError
                    except:  # noqa: E722
                        print("CAUGHT2")
                        raise ValueError
                except:  # noqa: E722
                    print("CAUGHT3")

        with captured_stdout() as stdout:
            foo(10)

        self.assertEqual(
            stdout.getvalue().split(),
            [
                "CAUGHT",
            ] * 4 + ["CAUGHT%s" % i for i in range(1, 4)],
        )
Ejemplo n.º 18
0
 def test_cuda_detect(self):
     # exercise the code path
     with captured_stdout() as out:
         cuda.detect()
     output = out.getvalue()
     self.assertIn("Found", output)
     self.assertIn("CUDA devices", output)
    def test_ex_initial_value_dict_compile_time_consts(self):
        with captured_stdout():
            # magictoken.test_ex_initial_value_dict_compile_time_consts.begin
            from numba import njit, literally
            from numba.extending import overload

            # overload this function
            def specialize(x):
                pass

            @overload(specialize)
            def ol_specialize(x):
                iv = x.initial_value
                if iv is None:
                    return lambda x: literally(x)  # Force literal dispatch
                assert iv == {'a': 1, 'b': 2, 'c': 3}  # INITIAL VALUE
                return lambda x: literally(x)

            @njit
            def foo():
                d = {'a': 1, 'b': 2, 'c': 3}
                d['c'] = 20  # no impact on .initial_value
                d['d'] = 30  # no impact on .initial_value
                return specialize(d)

            result = foo()
            print(result)  # {a: 1, b: 2, c: 20, d: 30} # NOT INITIAL VALUE!
            # magictoken.test_ex_initial_value_dict_compile_time_consts.end

        expected = typed.Dict()
        for k, v in {'a': 1, 'b': 2, 'c': 20, 'd': 30}.items():
            expected[k] = v
        self.assertEqual(result, expected)
Ejemplo n.º 20
0
    def test_unbalanced_example(self):
        with captured_stdout():
            # magictoken.ex_unbalanced.begin
            from numba import (
                njit,
                prange,
            )
            import numpy as np

            @njit(parallel=True)
            def func1():
                n = 100
                vals = np.empty(n)
                # The work in each iteration of the following prange
                # loop is proportional to its index.
                for i in prange(n):
                    cur = i + 1
                    for j in range(i):
                        if cur % 2 == 0:
                            cur //= 2
                        else:
                            cur = cur * 3 + 1
                    vals[i] = cur
                return vals

            result = func1()
            # magictoken.ex_unbalanced.end
            self.assertPreciseEqual(result, func1.py_func())
Ejemplo n.º 21
0
 def check_values(typ, values):
     cr = compile_isolated(pyfunc, (typ,))
     cfunc = cr.entry_point
     for val in values:
         with captured_stdout():
             cfunc(val)
             self.assertEqual(sys.stdout.getvalue(), str(val) + "\n")
    def test_ex_initial_value_list_compile_time_consts(self):
        with captured_stdout():
            # magictoken.test_ex_initial_value_list_compile_time_consts.begin
            from numba import njit, literally
            from numba.extending import overload

            # overload this function
            def specialize(x):
                pass

            @overload(specialize)
            def ol_specialize(x):
                iv = x.initial_value
                if iv is None:
                    return lambda x: literally(x)  # Force literal dispatch
                assert iv == [1, 2, 3]  # INITIAL VALUE
                return lambda x: x

            @njit
            def foo():
                l = [1, 2, 3]
                l[2] = 20  # no impact on .initial_value
                l.append(30)  # no impact on .initial_value
                return specialize(l)

            result = foo()
            print(result)  # [1, 2, 20, 30] # NOT INITIAL VALUE!
            # magictoken.test_ex_initial_value_list_compile_time_consts.end

        expected = [1, 2, 20, 30]
        self.assertEqual(result, expected)
Ejemplo n.º 23
0
 def test_print_strings(self):
     pyfunc = print_string
     cr = compile_isolated(pyfunc, (types.int32,))
     cfunc = cr.entry_point
     with captured_stdout():
         cfunc(1)
         self.assertEqual(sys.stdout.getvalue(), "1 hop! 3.5\n")
Ejemplo n.º 24
0
    def test_ex_inferred_dict_njit(self):
        with captured_stdout():
            # magictoken.ex_inferred_dict_njit.begin
            from numba import njit
            import numpy as np

            @njit
            def foo():
                d = dict()
                k = {1: np.arange(1), 2: np.arange(2)}
                # The following tells the compiler what the key type and the
                # value
                # type are for `d`.
                d[3] = np.arange(3)
                d[5] = np.arange(5)
                return d, k

            d, k = foo()
            print(d)  # {3: [0 1 2], 5: [0 1 2 3 4]}
            print(k)  # {1: [0], 2: [0 1]}
            # magictoken.ex_inferred_dict_njit.end
        np.testing.assert_array_equal(d[3], [0, 1, 2])
        np.testing.assert_array_equal(d[5], [0, 1, 2, 3, 4])
        np.testing.assert_array_equal(k[1], [0])
        np.testing.assert_array_equal(k[2], [0, 1])
Ejemplo n.º 25
0
 def test_print_multiple_values(self):
     pyfunc = print_values
     cr = compile_isolated(pyfunc, (types.int32,) * 3)
     cfunc = cr.entry_point
     with captured_stdout():
         cfunc(1, 2, 3)
         self.assertEqual(sys.stdout.getvalue(), "1 2 3\n")
Ejemplo n.º 26
0
    def test_chunksize_with(self):
        with captured_stdout():
            # magictoken.ex_chunksize_with.begin
            from numba import njit, prange, parallel_chunksize

            @njit(parallel=True)
            def func1(n):
                acc = 0
                for i in prange(n):
                    acc += i
                return acc

            @njit(parallel=True)
            def func2(n):
                acc = 0
                with parallel_chunksize(8):
                    for i in prange(n):
                        acc += i
                return acc

            with parallel_chunksize(4):
                result1 = func1(12)
                result2 = func2(12)
                result3 = func1(12)
            # magictoken.ex_chunksize_with.end
            self.assertPreciseEqual(result1, func1.py_func(12))
            self.assertPreciseEqual(result2, func2.py_func(12))
            self.assertPreciseEqual(result3, func1.py_func(12))
Ejemplo n.º 27
0
 def test_print(self):
     """
     Test re-implementing print() for a custom type with @overload.
     """
     cfunc = jit(nopython=True)(print_usecase)
     with captured_stdout():
         cfunc(MyDummy())
         self.assertEqual(sys.stdout.getvalue(), "hello!\n")
Ejemplo n.º 28
0
def assert_dpnp_implementaion():
    from numba.tests.support import captured_stdout

    with captured_stdout() as stdout, dpnp_debug():
        yield

    assert ("dpnp implementation"
            in stdout.getvalue()), "dpnp implementation is not used"
Ejemplo n.º 29
0
    def assert_equal_return_and_stdout(self, pyfunc, *args):
        py_args = copy.deepcopy(args)
        c_args = copy.deepcopy(args)
        cfunc = njit(pyfunc)

        with captured_stdout() as stream:
            expect_res = pyfunc(*py_args)
            expect_out = stream.getvalue()

        # avoid compiling during stdout-capturing for easier print-debugging
        cfunc.compile(tuple(map(typeof, c_args)))
        with captured_stdout() as stream:
            got_res = cfunc(*c_args)
            got_out = stream.getvalue()

        self.assertEqual(expect_out, got_out)
        self.assertPreciseEqual(expect_res, got_res)
Ejemplo n.º 30
0
    def test_inspect_types_with_signature(self):
        @jit
        def foo(a):
            return a + 1

        foo(1)
        foo(1.0)
        # Inspect all signatures
        with captured_stdout() as total:
            foo.inspect_types()
        # Inspect first signature
        with captured_stdout() as first:
            foo.inspect_types(signature=foo.signatures[0])
        # Inspect second signature
        with captured_stdout() as second:
            foo.inspect_types(signature=foo.signatures[1])

        self.assertEqual(total.getvalue(), first.getvalue() + second.getvalue())
Ejemplo n.º 31
0
    def test_array_debug_opt_stats(self):
        """
        Test that NUMBA_DEBUG_ARRAY_OPT_STATS produces valid output
        """
        # deliberately trigger a compilation loop to increment the
        # Parfor class state, this is to ensure the test works based
        # on indices computed based on this state and not hard coded
        # indices.
        cres = compile_isolated(supported_parfor, (types.int64, ),
                                flags=force_parallel_flags)

        with override_env_config("NUMBA_DEBUG_ARRAY_OPT_STATS", "1"):
            with captured_stdout() as out:
                cres = compile_isolated(supported_parfor, (types.int64, ),
                                        flags=force_parallel_flags)

            # grab the various parts out the output
            output = out.getvalue().split("\n")
            parallel_loop_output = [
                x for x in output if "is produced from pattern" in x
            ]
            fuse_output = [x for x in output if "is fused into" in x]
            after_fusion_output = [
                x for x in output if "After fusion, function" in x
            ]

            # Parfor's have a shared state index, grab the current value
            # as it will be used as an offset for all loop messages
            parfor_state = int(
                re.compile(r"#([0-9]+)").search(
                    parallel_loop_output[0]).group(1))
            bounds = range(parfor_state,
                           parfor_state + len(parallel_loop_output))

            # Check the Parallel for-loop <index> is produced from <pattern>
            # works first
            pattern = ("('ones function', 'NumPy mapping')", ("prange", "user",
                                                              ""))
            fmt = "Parallel for-loop #{} is produced from pattern '{}' at"
            for i, trials, lpattern in zip(bounds, parallel_loop_output,
                                           pattern):
                to_match = fmt.format(i, lpattern)
                self.assertIn(to_match, trials)

            # Check the fusion statements are correct
            pattern = (parfor_state + 1, parfor_state + 0)
            fmt = "Parallel for-loop #{} is fused into for-loop #{}."
            for trials in fuse_output:
                to_match = fmt.format(*pattern)
                self.assertIn(to_match, trials)

            # Check the post fusion statements are correct
            pattern = (supported_parfor.__name__, 1, set([parfor_state]))
            fmt = "After fusion, function {} has {} parallel for-loop(s) #{}."
            for trials in after_fusion_output:
                to_match = fmt.format(*pattern)
                self.assertIn(to_match, trials)
Ejemplo n.º 32
0
 def compile_simple_cuda(self):
     with captured_stdout() as out:
         cfunc = cuda.jit((float64[:], float64[:]))(simple_cuda)
         # Call compiled function (to ensure PTX is generated)
         # and sanity-check results.
         A = np.linspace(0, 1, 10).astype(np.float64)
         B = np.zeros_like(A)
         cfunc[1, 10](A, B)
         self.assertTrue(np.allclose(A + 1.5, B))
     return out.getvalue()
Ejemplo n.º 33
0
 def test_vectorize(self):
     def foo(x):
         return x + math.sin(x)
     fastfoo = vectorize(fastmath=True)(foo)
     slowfoo = vectorize(foo)
     x = np.random.random(8).astype(np.float32)
     # capture the optimized llvm to check for fast flag
     with override_config('DUMP_OPTIMIZED', True):
         with captured_stdout() as slow_cap:
             expect = slowfoo(x)
         slowllvm = slow_cap.getvalue()
         with captured_stdout() as fast_cap:
             got = fastfoo(x)
         fastllvm = fast_cap.getvalue()
     np.testing.assert_almost_equal(expect, got)
     self.assertIn('fadd fast', fastllvm)
     self.assertIn('call fast', fastllvm)
     self.assertNotIn('fadd fast', slowllvm)
     self.assertNotIn('call fast', slowllvm)
Ejemplo n.º 34
0
 def test_guvectorize(self):
     def foo(x, out):
         out[0] = x + math.sin(x)
     x = np.random.random(8).astype(np.float32)
     with override_config('DUMP_OPTIMIZED', True):
         types = ['(float32, float32[:])']
         sig = '()->()'
         with captured_stdout() as fast_cap:
             fastfoo = guvectorize(types, sig, fastmath=True)(foo)
         fastllvm = fast_cap.getvalue()
         with captured_stdout() as slow_cap:
             slowfoo = guvectorize(types, sig)(foo)
         slowllvm = slow_cap.getvalue()
     expect = slowfoo(x)
     got = fastfoo(x)
     np.testing.assert_almost_equal(expect, got)
     self.assertIn('fadd fast', fastllvm)
     self.assertIn('call fast', fastllvm)
     self.assertNotIn('fadd fast', slowllvm)
     self.assertNotIn('call fast', slowllvm)
Ejemplo n.º 35
0
    def test_array_comp_shuffle_sideeffect(self):
        nelem = 100

        @jit(nopython=True)
        def foo():
            numbers = np.array([i for i in range(nelem)])
            np.random.shuffle(numbers)
            print(numbers)

        with captured_stdout() as gotbuf:
            foo()
        got = gotbuf.getvalue().strip()

        with captured_stdout() as expectbuf:
            print(np.array([i for i in range(nelem)]))
        expect = expectbuf.getvalue().strip()

        # For a large enough array, the chances of shuffle to not move any
        # element is tiny enough.
        self.assertNotEqual(got, expect)
        self.assertRegexpMatches(got, r'\[(\s*\d+)+\]')
Ejemplo n.º 36
0
def captured_cuda_stdout():
    """
    Return a minimal stream-like object capturing the text output of
    either CUDA or the simulator.
    """
    if config.ENABLE_CUDASIM:
        # The simulator calls print() on Python stdout
        with captured_stdout() as stream:
            yield PythonTextCapture(stream)
    else:
        # The CUDA runtime writes onto the system stdout
        from numba import cuda
        fd = sys.__stdout__.fileno()
        with redirect_fd(fd) as stream:
            yield CUDATextCapture(stream)
            cuda.synchronize()
Ejemplo n.º 37
0
def captured_cuda_stdout():
    """
    Return a minimal stream-like object capturing the text output of
    either CUDA or the simulator.
    """
    # Prevent accidentally capturing previously output text
    sys.stdout.flush()

    if config.ENABLE_CUDASIM:
        # The simulator calls print() on Python stdout
        with captured_stdout() as stream:
            yield PythonTextCapture(stream)
    else:
        # The CUDA runtime writes onto the system stdout
        from numba import cuda
        with redirect_c_stdout() as stream:
            yield CUDATextCapture(stream)
            cuda.synchronize()
Ejemplo n.º 38
0
    def test_gil_reacquire_deadlock(self):
        """
        Testing similar issue to #1998 due to GIL reacquiring for Gufunc
        """
        # make a ctypes callback that requires the GIL
        proto = ctypes.CFUNCTYPE(None, ctypes.c_int32)
        characters = 'abcdefghij'

        def bar(x):
            print(characters[x])

        cbar = proto(bar)

        # our unit under test
        @guvectorize(['(int32, int32[:])'], "()->()",
                     target='parallel', nopython=True)
        def foo(x, out):
            print(x % 10)  # this reacquires the GIL
            cbar(x % 10)   # this reacquires the GIL
            out[0] = x * 2

        # Numpy ufunc has a heuristic to determine whether to release the GIL
        # during execution.  Small input size (10) seems to not release the GIL.
        # Large input size (1000) seems to release the GIL.
        for nelem in [1, 10, 100, 1000]:
            # inputs
            a = np.arange(nelem, dtype=np.int32)
            acopy = a.copy()
            # run and capture stdout
            with captured_stdout() as buf:
                got = foo(a)
            stdout = buf.getvalue()
            buf.close()
            # process outputs from print
            got_output = sorted(map(lambda x: x.strip(), stdout.splitlines()))
            # build expected output
            expected_output = [str(x % 10) for x in range(nelem)]
            expected_output += [characters[x % 10] for x in range(nelem)]
            expected_output = sorted(expected_output)
            # verify
            self.assertEqual(got_output, expected_output)
            np.testing.assert_equal(got, 2 * acopy)