Ejemplo n.º 1
0
def test_prob3numba(ignore_fails=False, define_as_ref=False):
    """Run all unit test cases for prob3numba code"""

    # Pull first test case to test calling `propagate_array`
    tc_name, tc = next(iter(TEST_CASES.items()))
    tc_ = deepcopy(tc)
    logging.info(
        "Testing call and return shape of `propagate_array` with test case '%s'",
        tc_name,
    )

    # Test simple broadcasting over `nubars` and `energies` where both have
    # same shape, as this is the "typical" use case
    input_shape = (4, 5)

    # Without broadcasting, a single probability matrix is 3x3
    prob_array_shape = (3, 3)

    # Broadcasted shape
    out_shape = input_shape + prob_array_shape

    nubars = np.full(shape=input_shape, fill_value=tc_["nubar"], dtype=IX)
    energies = np.full(shape=input_shape, fill_value=tc_["energy"], dtype=FX)

    # Fill with NaN to ensure all elements are assinged a value
    probabilities = SmartArray(np.full(shape=out_shape, fill_value=np.nan, dtype=FX))

    propagate_array(
        SmartArray(tc_["dm"].astype(FX)).get(WHERE),
        SmartArray(tc_["pmns"].astype(CX)).get(WHERE),
        SmartArray(tc_["mat_pot"].astype(CX)).get(WHERE),
        SmartArray(nubars).get(WHERE),
        SmartArray(energies).get(WHERE),
        SmartArray(tc_["layer_densities"].astype(FX)).get(WHERE),
        SmartArray(tc_["layer_distances"].astype(FX)).get(WHERE),
        # output:
        probabilities.get(WHERE),
    )
    probabilities.mark_changed(WHERE)
    probabilities = probabilities.get("host")

    # Check that all probability matrices have no NaNs and are equal to one
    # another
    ref_probs = probabilities[0, 0]
    for i in range(input_shape[0]):
        for j in range(input_shape[1]):
            probs = probabilities[i, j]
            assert np.all(np.isfinite(probs))
            assert np.all(probs == ref_probs)

    # Run all test cases
    for tc_name, tc in TEST_CASES.items():
        run_test_case(
            tc_name, tc, ignore_fails=ignore_fails, define_as_ref=define_as_ref
        )
Ejemplo n.º 2
0
    def test_transpose(self):

        # To verify non-redundant data movement run this test with NUMBA_TRACE=1
        a = SmartArray(np.arange(16, dtype=float).reshape(4, 4))
        b = SmartArray(where='gpu', shape=(4, 4), dtype=float)
        c = SmartArray(where='gpu', shape=(4, 4), dtype=float)
        event("initialization done")
        transpose(a, b)
        event("checkpoint")
        transpose(b, c)
        event("done")
        self.assertTrue((c.get('host') == a.get('host')).all())
Ejemplo n.º 3
0
def test_clear_matrix():
    """Unit tests of `clear_matrix` and `clear_matrix_guf`"""
    A = SmartArray(np.ones((4, 3), dtype=FTYPE))

    clear_matrix_guf(A.get(WHERE), A.get(WHERE))
    A.mark_changed(WHERE)

    test = A.get()
    ref = np.zeros((4, 3), dtype=FTYPE)
    assert np.array_equal(test, ref), f"test:\n{test}\n!= ref:\n{ref}"

    logging.info("<< PASS : test_clear_matrix >>")
Ejemplo n.º 4
0
    def test_transpose(self):

        # To verify non-redundant data movement run this test with NUMBA_TRACE=1
        a = SmartArray(np.arange(16, dtype=float).reshape(4,4))
        b = SmartArray(where='gpu', shape=(4,4), dtype=float)
        c = SmartArray(where='gpu', shape=(4,4), dtype=float)
        event("initialization done")
        transpose(a, b)
        event("checkpoint")
        transpose(b, c)
        event("done")
        self.assertTrue((c.get('host') == a.get('host')).all())
Ejemplo n.º 5
0
def test_conjugate():
    """Unit tests of `conjugate` and `conjugate_guf`"""
    A = SmartArray((np.linspace(1, 12, 12) +
                    1j * np.linspace(21, 32, 12)).reshape(4, 3).astype(CX))
    B = SmartArray(np.ones((4, 3), dtype=CX))

    conjugate_guf(A.get(WHERE), B.get(WHERE))
    B.mark_changed(WHERE)

    test = B.get()
    ref = A.get().conj()

    assert np.allclose(test, ref,
                       **ALLCLOSE_KW), f"test:\n{test}\n!= ref:\n{ref}"

    A = SmartArray(np.linspace(1, 12, 12, dtype=FX).reshape(3, 4))
    B = SmartArray(np.ones((3, 4), dtype=FX))

    conjugate_guf(A.get(WHERE), B.get(WHERE))
    B.mark_changed(WHERE)

    test = B.get()
    ref = A.get().conj()
    assert np.allclose(test, ref,
                       **ALLCLOSE_KW), f"test:\n{test}\n!= ref:\n{ref}"

    logging.info("<< PASS : test_conjugate >>")
Ejemplo n.º 6
0
def test_matrix_dot_matrix():
    """Unit tests of `matrix_dot_matrix` and `matrix_dot_matrix_guf`"""
    A = SmartArray(np.linspace(1, 12, 12, dtype=FTYPE).reshape(3, 4))
    B = SmartArray(np.linspace(1, 12, 12, dtype=FTYPE).reshape(4, 3))
    C = SmartArray(np.ones((3, 3), dtype=FTYPE))

    matrix_dot_matrix_guf(A.get(WHERE), B.get(WHERE), C.get(WHERE))
    C.mark_changed(WHERE)

    test = C.get()
    ref = np.dot(A, B).astype(FTYPE)
    assert np.allclose(test, ref,
                       **ALLCLOSE_KW), f"test:\n{test}\n!= ref:\n{ref}"

    logging.info("<< PASS : test_matrix_dot_matrix >>")
Ejemplo n.º 7
0
def test_matrix_dot_vector():
    """Unit tests of `matrix_dot_vector` and `matrix_dot_vector_guf`"""
    A = SmartArray(np.linspace(1, 12, 12, dtype=FTYPE).reshape(4, 3))
    v = SmartArray(np.linspace(1, 3, 3, dtype=FTYPE))
    w = SmartArray(np.ones(4, dtype=FTYPE))

    matrix_dot_vector_guf(A.get(WHERE), v.get(WHERE), w.get(WHERE))
    w.mark_changed(WHERE)

    test = w.get()
    ref = np.dot(A, v).astype(FTYPE)
    assert np.allclose(test, ref,
                       **ALLCLOSE_KW), f"test:\n{test}\n!= ref:\n{ref}"

    logging.info("<< PASS : test_matrix_dot_vector >>")
Ejemplo n.º 8
0
def test_imul_and_scale():
    """Unit tests for function ``imul_and_scale``"""
    a = SmartArray(np.linspace(0, 1, 1000, dtype=FTYPE))
    out = SmartArray(np.ones_like(a))
    imul_and_scale(vals=a, scale=10.0, out=out)
    assert np.allclose(out.get("host"), np.linspace(0, 10, 1000, dtype=FTYPE))
    logging.info("<< PASS : test_multiply_and_scale >>")
Ejemplo n.º 9
0
    def add_array_data(self, key, data):
        """
        Parameters
        ----------
        key : string
            identifier

        data : ndarray

        """
        if isinstance(data, np.ndarray):
            data = SmartArray(data)
        if self.array_length is None:
            self.array_length = data.get('host').shape[0]
        assert data.get('host').shape[0] == self.array_length
        self.array_data[key] = data
Ejemplo n.º 10
0
 def test_astype(self):
     a = SmartArray(np.int32([42, 8, -5]))
     aa = a.astype(np.float64)
     self.assertIsInstance(aa, SmartArray)
     # verify that SmartArray.astype() operates like ndarray.astype()...
     self.assertPreciseEqual(aa.get('host'), a.get('host').astype(np.float64))
     # ...and that both actually yield the expected dtype.
     self.assertPreciseEqual(aa.get('host').dtype.type, np.float64)
     self.assertIs(aa.dtype.type, np.float64)
Ejemplo n.º 11
0
 def test_astype(self):
     a = SmartArray(np.int32([42, 8, -5]))
     aa = a.astype(np.float64)
     self.assertIsInstance(aa, SmartArray)
     # verify that SmartArray.astype() operates like ndarray.astype()...
     self.assertPreciseEqual(aa.get('host'),
                             a.get('host').astype(np.float64))
     # ...and that both actually yield the expected dtype.
     self.assertPreciseEqual(aa.get('host').dtype.type, np.float64)
     self.assertIs(aa.dtype.type, np.float64)
Ejemplo n.º 12
0
def test():
    from numba import SmartArray
    a = np.linspace(0, 1, 1000, dtype=FTYPE)
    a = SmartArray(a)

    out = np.ones_like(a)
    out = SmartArray(out)

    multiply_and_scale(10., a, out)

    assert np.allclose(out.get('host'), np.linspace(0, 10, 1000, dtype=FTYPE))
Ejemplo n.º 13
0
def main():
    print("ftype=", ftype)

    # hist arrays
    mix = np.ones((3, 3), dtype=np.float64)
    n = 1000000
    inp = np.arange(3 * n, dtype=np.int32).reshape(n, 3)
    out = np.ones((n), dtype=np.int32)

    inp = SmartArray(inp)
    out = SmartArray(out)

    start_t = time.time()
    sum_row(mix, 42.0 + 2j, inp.get(WHERE), out=out.get(WHERE))
    end_t = time.time()
    print("took %.5f" % (end_t - start_t))
    start_t = time.time()
    sum_row(mix, 42.0 + 2j, inp.get(WHERE), out=out.get(WHERE))
    end_t = time.time()
    print("took %.5f" % (end_t - start_t))
    out.mark_changed(WHERE)

    print(out.get("host"))
Ejemplo n.º 14
0
 def test_ufunc(self):
     a = SmartArray(np.int32([42, 8, -5]))
     cfunc = jit(nopython=True)(npyufunc_usecase)
     aa = cfunc(a)
     self.assertIsInstance(aa, SmartArray)
     self.assertPreciseEqual(aa.get('host'), np.cos(np.sin(a.get('host'))))
Ejemplo n.º 15
0
def test_find_index():
    """Unit tests for `find_index` function.

    Correctness is defined as producing the same histogram as numpy.histogramdd
    by using the output of `find_index` (ignoring underflow and overflow values).
    Additionally, -1 should be returned if a value is below the range
    (underflow) or is nan, and num_bins should be returned for a value above
    the range (overflow).
    """
    # Negative, positive, integer, non-integer, binary-unrepresentable (0.1) edges
    basic_bin_edges = [-1, -0.5, -0.1, 0, 0.1, 0.5, 1, 2, 3, 4]

    for basic_bin_edges in [
            # Negative, positive, integer, non-integer, binary-unrepresentable (0.1) edges
        [-1, -0.5, -0.1, 0, 0.1, 0.5, 1, 2, 3, 4],

            # A single infinite bin: [-np.inf, np.inf]
        [],

            # Half-infinite bins (lower or upper edge) & [-inf, .1, +inf]
        [0.1],

            # Single bin with finite edges & +/-inf-edge(s)-added variants
        [-0.1, 0.1],
    ]:
        # Bin edges from above, w/ and w/o +/-inf as left and/or right edges
        for le, re in [(None, None), (-np.inf, None), (None, np.inf),
                       (-np.inf, np.inf)]:
            bin_edges = deepcopy(basic_bin_edges)
            if le is not None:
                bin_edges = [le] + bin_edges
            if re is not None:
                bin_edges = bin_edges + [re]
            if len(bin_edges) < 2:
                continue
            logging.debug('bin_edges being tested: %s', bin_edges)
            bin_edges = SmartArray(np.array(bin_edges, dtype=FTYPE))

            num_bins = len(bin_edges) - 1
            underflow_idx = -1
            overflow_idx = num_bins

            #
            # Construct test values to try out
            #

            non_finite_vals = [-np.inf, +np.inf, np.nan]

            # Values within bins (i.e., not on edges)
            inbin_vals = []
            for idx in range(len(bin_edges) - 1):
                lower_be = bin_edges[idx]
                upper_be = bin_edges[idx + 1]
                if np.isfinite(lower_be):
                    if np.isfinite(upper_be):
                        inbin_val = (lower_be + upper_be) / 2
                    else:
                        inbin_val = lower_be + 10.5
                else:
                    if np.isfinite(upper_be):
                        inbin_val = upper_be - 10.5
                    else:
                        inbin_val = 10.5
                inbin_vals.append(inbin_val)

            # Values above/below bin edges by one unit of floating point
            # accuracy
            eps = np.finfo(FTYPE).eps  # pylint: disable=no-member
            below_edges_vals = [FTYPE((1 - eps) * be) for be in bin_edges]
            above_edges_vals = [FTYPE((1 + eps) * be) for be in bin_edges]

            test_vals = np.concatenate([
                non_finite_vals,
                bin_edges,
                inbin_vals,
                below_edges_vals,
                above_edges_vals,
            ])
            logging.trace('test_vals = %s', test_vals)

            #
            # Run tests
            #
            for val in test_vals:
                val = FTYPE(val)

                np_histvals, _ = np.histogramdd([val],
                                                np.atleast_2d(bin_edges))
                nonzero_indices = np.nonzero(np_histvals)[
                    0]  # select first & only dim
                if np.isnan(val):
                    assert len(nonzero_indices) == 0
                    expected_idx = underflow_idx
                elif val < bin_edges[0]:
                    assert len(nonzero_indices) == 0
                    expected_idx = underflow_idx
                elif val > bin_edges[-1]:
                    assert len(nonzero_indices) == 0
                    expected_idx = overflow_idx
                else:
                    assert len(nonzero_indices) == 1
                    expected_idx = nonzero_indices[0]

                if TARGET == 'cpu':
                    found_idx = find_index(val, bin_edges)
                elif TARGET == 'cuda':
                    found_idx_ary = SmartArray(np.zeros(1, dtype=np.int))
                    find_index_cuda(
                        SmartArray(np.array([val], dtype=FTYPE)).get('gpu'),
                        bin_edges.get('gpu'),
                        found_idx_ary,
                    )
                    found_idx = found_idx_ary.get()[0]
                else:
                    raise NotImplementedError(f"TARGET='{TARGET}'")

                if found_idx != expected_idx:
                    msg = 'val={}, edges={}: Expected idx={}, found idx={}'.format(
                        val, bin_edges, expected_idx, found_idx)
                    assert False, msg

    logging.info('<< PASS : test_find_index >>')
Ejemplo n.º 16
0
def lookup(sample, flat_hist, binning):
    """The inverse of histograming: Extract the histogram values at `sample`
    points.

    Parameters
    ----------
    sample : num_dims list of length-num_samples SmartArrays
        Points at which to find histogram's values
    flat_hist : SmartArray
        Histogram values
    binning : num_dims MultiDimBinning
        Histogram's binning

    Returns
    -------
    hist_vals : len-num_samples SmartArray

    Notes
    -----
    Only handles 2d and 3d right now

    """
    #print(binning)
    assert binning.num_dims in [2, 3], 'can only do 2d and 3d at the moment'
    bin_edges = [edges.magnitude for edges in binning.bin_edges]
    # TODO: directly return smart array
    if flat_hist.ndim == 1:
        #print 'looking up 1D'
        hist_vals = SmartArray(np.zeros_like(sample[0]))
        if binning.num_dims == 2:
            lookup_vectorized_2d(
                sample[0].get(WHERE),
                sample[1].get(WHERE),
                flat_hist.get(WHERE),
                bin_edges[0],
                bin_edges[1],
                out=hist_vals.get(WHERE),
            )
        elif binning.num_dims == 3:
            lookup_vectorized_3d(
                sample[0].get(WHERE),
                sample[1].get(WHERE),
                sample[2].get(WHERE),
                flat_hist.get(WHERE),
                bin_edges[0],
                bin_edges[1],
                bin_edges[2],
                out=hist_vals.get(WHERE),
            )
    elif flat_hist.ndim == 2:
        #print 'looking up ND'
        hist_vals = SmartArray(
            np.zeros((sample[0].size, flat_hist.shape[1]), dtype=FTYPE))
        if binning.num_dims == 2:
            lookup_vectorized_2d_arrays(
                sample[0].get(WHERE),
                sample[1].get(WHERE),
                flat_hist.get(WHERE),
                bin_edges[0],
                bin_edges[1],
                out=hist_vals.get(WHERE),
            )
        elif binning.num_dims == 3:
            lookup_vectorized_3d_arrays(
                sample[0].get(WHERE),
                sample[1].get(WHERE),
                sample[2].get(WHERE),
                flat_hist.get(WHERE),
                bin_edges[0],
                bin_edges[1],
                bin_edges[2],
                out=hist_vals.get(WHERE),
            )
    else:
        raise NotImplementedError()

    hist_vals.mark_changed(WHERE)

    return hist_vals
Ejemplo n.º 17
0
def execute_func(func, func_kw):
    """Run `func` with *func_kw.values() where `outputs` specify names in
    `func_kw` taken to be outputs of the function; for these, mark changed.
    Retrieve both input and output values as Numpy arrays on the host and
    aggregate together in a single dict before returning.

    Parameters
    ----------
    func : numba CPUDispatcher or CUDADispatcher
    func_kw : OrderedDict

    Returns
    -------
    ret_dict : OrderedDict
        Keys are arg names and vals are type-"correct" values; all arrays are
        converted to host Numpy arrays

    """
    py_func = func.py_func
    func_name = ".".join([getmodule(py_func).__name__, py_func.__name__])
    arg_names = list(signature(py_func).parameters.keys())
    if hasattr(func, "signatures"):
        arg_types = func.signatures[0]
    else:
        arg_types = func.compiled.argument_types

    # Convert types; wrap arrays with SmartArray and place on device (if necessary)

    missing = set(arg_names).difference(func_kw.keys())
    excess = set(func_kw.keys()).difference(arg_names)
    if missing or excess:
        msgs = []
        if missing:
            msgs.append(f"missing kwargs {missing}")
        if excess:
            msgs.append(f"excess kwargs {excess}")
        raise KeyError(f"{func_name}:" + ", ".join(msgs))

    typed_args = OrderedDict()
    for arg_name, arg_type in zip(arg_names, arg_types):
        val = func_kw[arg_name]
        if arg_type.name.startswith("array"):
            arg_val = SmartArray(val.astype(arg_type.dtype.key))
            arg_val = arg_val.get("host")
        else:
            arg_val = arg_type(val)
        typed_args[arg_name] = arg_val

    # Call the host function with typed args

    try:
        func(*list(typed_args.values()))
    except Exception:
        logging.error("Failed running `%s` with args %s", func_name, str(typed_args))
        raise

    # All arrays converted to Numpy host arrays

    ret_dict = OrderedDict()
    for key, val in typed_args.items():
        if isinstance(val, SmartArray):
            val.mark_changed(WHERE)
            val = val.get("host")
        ret_dict[key] = val

    return ret_dict
Ejemplo n.º 18
0
def lookup_indices(sample, binning):
    """Lookup (flattened) bin index for sample points.

    Parameters
    ----------
    sample : length-M_dimensions sequence of length-N_events SmartArrays
        All smart arrays must have the same lengths; corresponding elements of
        the arrays are the coordinates of an event in the dimensions each array
        represents.

    binning : pisa.core.binning.MultiDimBinning or convertible thereto
        `binning` is passed to instantiate ``MultiDimBinning``, so e.g., a
        pisa.core.binning.OneDimBinning is valid to pass as `binning`

    Returns
    -------
    indices : length-N_events SmartArray
        One for each event the index of the histogram in which it falls into

    Notes
    -----
    this method works for 1d, 2d and 3d histogram only

    """
    # Convert non-MultiDimBinning objects into MultiDimBinning if possible;
    # if this fails, an error will result, as it should
    binning = MultiDimBinning(binning)

    if len(sample) != binning.num_dims:
        raise ValueError(
            f"`binning` has {binning.num_dims} dimension(s), but `sample`"
            f"contains {len(sample)} arrays (so represents {len(sample)}"
            f" dimensions)")

    lookup_funcs = {
        1: lookup_indices_vectorized_1d,
        2: lookup_indices_vectorized_2d,
        3: lookup_indices_vectorized_3d,
    }

    if binning.num_dims not in lookup_funcs:
        raise NotImplementedError(
            "binning must have num_dims in {}; got {}".format(
                sorted(lookup_funcs.keys()), binning.num_dims))

    lookup_func = lookup_funcs[binning.num_dims]

    lookup_func_args = (
        [a.get(WHERE) for a in sample] +
        [SmartArray(dim.edge_magnitudes).get(WHERE) for dim in binning])
    logging.trace("lookup_func_args = {}".format(lookup_func_args))

    # Create an array to store the results
    indices = SmartArray(np.empty_like(sample[0], dtype=np.int64))

    # Perform the lookup
    lookup_func(*lookup_func_args, out=indices.get(WHERE))

    indices.mark_changed(WHERE)

    return indices
Ejemplo n.º 19
0
 def test_ufunc(self):
     a = SmartArray(np.int32([42, 8, -5]))
     cfunc = jit(nopython=True)(npyufunc_usecase)
     aa = cfunc(a)
     self.assertIsInstance(aa, SmartArray)
     self.assertPreciseEqual(aa.get('host'), np.cos(np.sin(a.get('host'))))
Ejemplo n.º 20
0
def lookup(sample, flat_hist, binning):
    '''
    the inverse of histograming

    Paramters
    --------

    sample : list of SmartArrays

    flat_hist : SmartArray

    binning : PISA MultiDimBinning

    Notes
    -----
    this is only a 2d method right now
    '''
    #print(binning)
    assert binning.num_dims in [2,3], 'can only do 2d and 3d at the moment'
    bin_edges = [edges.magnitude for edges in binning.bin_edges]
    # todo: directly return smart array
    if flat_hist.ndim == 1:
        #print 'looking up 1D'
        array = SmartArray(np.zeros_like(sample[0]))
        if binning.num_dims == 2:
            lookup_vectorized_2d(sample[0].get(WHERE), sample[1].get(WHERE), flat_hist.get(WHERE), bin_edges[0], bin_edges[1], out=array.get(WHERE))
        elif binning.num_dims == 3:
            lookup_vectorized_3d(sample[0].get(WHERE), sample[1].get(WHERE), sample[2].get(WHERE), flat_hist.get(WHERE), bin_edges[0], bin_edges[1], bin_edges[2], out=array.get(WHERE))
    elif flat_hist.ndim == 2:
        #print 'looking up ND'
        array = SmartArray(np.zeros((sample[0].size, flat_hist.shape[1]), dtype=FTYPE))
        if binning.num_dims == 2:
            lookup_vectorized_2d_arrays(sample[0].get(WHERE), sample[1].get(WHERE), flat_hist.get(WHERE), bin_edges[0], bin_edges[1], out=array.get(WHERE))
        elif binning.num_dims == 3:
            lookup_vectorized_3d_arrays(sample[0].get(WHERE), sample[1].get(WHERE), sample[2].get(WHERE), flat_hist.get(WHERE), bin_edges[0], bin_edges[1], bin_edges[2], out=array.get(WHERE))
    else:
        raise NotImplementedError()
    array.mark_changed(WHERE)
    return array
Ejemplo n.º 21
0
def test_lookup_indices():
    """Unit tests for `lookup_indices` function"""

    #
    # Test a variety of points.
    # Points falling exactly on the bound are included in the
    #
    n_evts = 100

    x = np.array([-5, 0.5, 1.5, 7.0, 6.5, 8.0, 6.5], dtype=FTYPE)
    y = np.array([-5, 0.5, 1.5, 1.5, 3.0, 1.5, 2.5], dtype=FTYPE)
    z = np.array([-5, 0.5, 1.5, 1.5, 0.5, 6.0, 0.5], dtype=FTYPE)

    w = np.ones(n_evts, dtype=FTYPE)

    x = SmartArray(x)
    y = SmartArray(y)
    z = SmartArray(z)

    w = SmartArray(w)

    binning_x = OneDimBinning(name="x", num_bins=7, is_lin=True, domain=[0, 7])
    binning_y = OneDimBinning(name="y", num_bins=4, is_lin=True, domain=[0, 4])
    binning_z = OneDimBinning(name="z", num_bins=2, is_lin=True, domain=[0, 2])

    binning_1d = binning_x
    binning_2d = binning_x * binning_y
    binning_3d = binning_x * binning_y * binning_z

    # 1D case: check that each event falls into its predicted bin
    #
    # All values higher or equal to the last bin edges are assigned an index of zero
    #
    logging.trace("TEST 1D:")
    logging.trace("Total number of bins: {}".format(7))
    logging.trace("array in 1D: {}".format(x.get()))
    logging.trace("Binning: {}".format(binning_1d.bin_edges[0]))
    indices = lookup_indices([x], binning_1d)
    logging.trace("indices of each array element: {}".format(indices.get()))
    logging.trace("*********************************")
    test = indices.get()
    ref = np.array([-1, 0, 1, 6, 6, 7, 6])
    assert np.array_equal(test, ref), "test={} != ref={}".format(test, ref)

    # 2D case:
    #
    # The binning edges are flattened as follows:
    #   [(x=0, y=0), (x=0, y=1), (x=1, y=0), ...]
    #
    logging.trace("TEST 2D:")
    logging.trace("Total number of bins: {}".format(7 * 4))
    logging.trace("array in 2D: {}".format(list(zip(x.get(), y.get()))))
    logging.trace("Binning: {}".format(binning_2d.bin_edges))
    indices = lookup_indices([x, y], binning_2d)
    logging.trace("indices of each array element: {}".format(indices.get()))
    logging.trace("*********************************")
    test = indices.get()
    ref = np.array([-1, 0, 5, 25, 27, 28, 26])
    assert np.array_equal(test, ref), "test={} != ref={}".format(test, ref)

    # 3D case:
    #
    # the binning edges are flattened as follows:
    #   [(x=0, y=0, z=0), (x=0, y=0, z=1), (x=0, y=1, z=0)...]
    #
    logging.trace("TEST 3D:")
    logging.trace("Total number of bins: {}".format(7 * 4 * 2))
    logging.trace("array in 3D: {}".format(list(zip(x.get(), y.get(),
                                                    z.get()))))
    logging.trace("Binning: {}".format(binning_3d.bin_edges))
    indices = lookup_indices([x, y, z], binning_3d)
    logging.trace("indices of each array element: {}".format(indices.get()))
    logging.trace("*********************************")
    test = indices.get()
    ref = np.array([-1, 0, 11, 51, 54, 56, 52])
    assert np.array_equal(test, ref), "test={} != ref={}".format(test, ref)

    logging.info("<< PASS : test_lookup_indices >>")