def __init__(self, p=Fraction(0), q=Fraction(0), ext=2):
     self.p = p
     self.q = q
     self.ext = ext
     if is_square(ext):
         self.p += lsqrt(ext)
         self.q = 0
         while is_square(self.ext):
             self.ext = lsqrt(self.ext)
Ejemplo n.º 2
0
def find_min_solution(D):
    y = 1
    if(is_square(D)):
        return None
    
    while(True):
        xsq_candidate = D*(y**2) + 1
        if(is_square(xsq_candidate)):
            return (lsqrt(xsq_candidate), y)
        y += 1
Ejemplo n.º 3
0
def solve(L):
    solutions = {}
    for a in range(1, L/4 + 1):
        if a % 100 == 0:
            print(a)
        for b in range(a+1, (L-2*a)/2 + 1):
            absq = a**2 + b**2
            if is_square(absq):
                c = lsqrt(absq)
                try:
                    solutions[a + b + c].append((a,b,c))
                except KeyError, e:
                    solutions[a + b + c] = [(a,b,c)]
Ejemplo n.º 4
0
def solve(N):
    result = 0 #@UnusedVariable
    perimeter_to_sides = {}
    for a in range(1, N + 1):
        for b in range(a, N-a + 1):
            if is_square(a**2 + b**2):
                p = perimeter(a, b)
                if p > N:
                    break
                c = lsqrt(a**2+b**2)
                try:
                    perimeter_to_sides[p].append((a,b,c))
                except KeyError, e:
                    perimeter_to_sides[p] = [(a,b,c)]
Ejemplo n.º 5
0
def solve(n):
    
    for a in range(0, int(n/2) + 1):
        asq = a**2
        start = max(a+1, n/2 - a)
        end = n/2
        for b in range(start, end + 1):
            bsq = b**2
            csq_candidate = asq + bsq
            if(is_square(csq_candidate) and csq_candidate > bsq):
                c = lsqrt(csq_candidate)
                if((a + b + c) == n):
                    return (a, b, c)
        
    return None
Ejemplo n.º 6
0
Archivo: 140.py Proyecto: wxv/PyPE
# Like #137, use generating function
# sum(G_{n+2}*z^n) = sum(G_{n+1}*z^n) + sum(G_n*z^n)  Recurrence
# g(z) = sum(G_n*z^n),  => g(z)/z^2 - G_2/z^2 - G1/z = g(z)/z - G1/z + g(z)
# => g(z) = (1+3z)/(1-z-z^2),  A = z*g(z) = (z+3z^2)/(1-z-z^2)  Discriminant: 5A^2 + 14A + 1
from number import is_square

# Alpern Diophantine solver
# Starting pairs (0, +-1) (-3, +-2) (-4, +-5) (2, +-7)
xy = [(0, -1), (0, 1), (-3, -2), (-3, 2), (-4, -5), (-4, 5)]  # (2, +-7) unneeded

nuggets = set()
for i in range(15):
    print([p[0] for p in xy])
    for pair in xy:
        x = pair[0]
        if x > 0 and is_square(5*x**2 + 14*x + 1):
            nuggets.add(x)

    for j in range(len(xy)):
        x = xy[j][0]
        y = xy[j][1]
        xy[j] = (-9*x - 4*y - 14, -20*x - 9*y - 28)


print(sorted(nuggets))
print(sum(sorted(nuggets)[:30]))
Ejemplo n.º 7
0
Archivo: 137.py Proyecto: wxv/PyPE
# G = 1 + z + 2z^2 + ... = 1/(1 -z - z^2)
# A(x) = x*G = x/(1 - x - x^2)  Discriminant = 5A^2 + 2A + 1
# Recurrence relations from http://www.alpertron.com.ar/QUAD.HTM
from number import is_square

def r(x, y): return (-9*x - 4*y - 2, -20*x - 9*y - 4)

x1, y1 = 0, 1
x2, y2 = 0, -1
x3, y3 = -1, -2
x4, y4 = -1, 2

nuggets = set()

for i in range(20):
    print(x1, x2, x3)
    for x in (x1, x2, x3):  # x3 and x4 generate same solutions
        if x > 0 and is_square(5*x**2 + 2*x + 1): nuggets.add(x)

    x1, y1 = r(x1, y1)
    x2, y2 = r(x2, y2)
    x3, y3 = r(x3, y3)
    x4, y4 = r(x4, y4)

print(sorted(nuggets))
print(sorted(nuggets)[14])