Ejemplo n.º 1
0
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
    arr = asanyarray(a)

    # Upgrade bool, unsigned int, and int to float64
    if dtype is None and arr.dtype.kind in ['b', 'u', 'i']:
        ret = um.add.reduce(arr,
                            axis=axis,
                            dtype='f8',
                            out=out,
                            keepdims=keepdims)
    else:
        ret = um.add.reduce(arr,
                            axis=axis,
                            dtype=dtype,
                            out=out,
                            keepdims=keepdims)
    rcount = _count_reduce_items(arr, axis)
    if isinstance(ret, mu.ndarray):
        ret = um.true_divide(ret,
                             rcount,
                             out=ret,
                             casting='unsafe',
                             subok=False)
    else:
        ret = ret / float(rcount)
    return ret
Ejemplo n.º 2
0
def atleast_2d(*arys):
    """
    View inputs as arrays with at least two dimensions.

    Parameters
    ----------
    arys1, arys2, ... : array_like
        One or more array-like sequences.  Non-array inputs are converted
        to arrays.  Arrays that already have two or more dimensions are
        preserved.

    Returns
    -------
    res, res2, ... : ndarray
        An array, or tuple of arrays, each with ``a.ndim >= 2``.
        Copies are avoided where possible, and views with two or more
        dimensions are returned.

    See Also
    --------
    atleast_1d, atleast_3d

    Examples
    --------
    >>> np.atleast_2d(3.0)
    array([[ 3.]])

    >>> x = np.arange(3.0)
    >>> np.atleast_2d(x)
    array([[ 0.,  1.,  2.]])
    >>> np.atleast_2d(x).base is x
    True

    >>> np.atleast_2d(1, [1, 2], [[1, 2]])
    [array([[1]]), array([[1, 2]]), array([[1, 2]])]

    """
    res = []
    for ary in arys:
        ary = asanyarray(ary)
        if len(ary.shape) == 0 :
            result = ary.reshape(1, 1)
        elif len(ary.shape) == 1 :
            result = ary[newaxis, :]
        else :
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res
Ejemplo n.º 3
0
def atleast_1d(*arys):
    """
    Convert inputs to arrays with at least one dimension.

    Scalar inputs are converted to 1-dimensional arrays, whilst
    higher-dimensional inputs are preserved.

    Parameters
    ----------
    arys1, arys2, ... : array_like
        One or more input arrays.

    Returns
    -------
    ret : ndarray
        An array, or sequence of arrays, each with ``a.ndim >= 1``.
        Copies are made only if necessary.

    See Also
    --------
    atleast_2d, atleast_3d

    Examples
    --------
    >>> np.atleast_1d(1.0)
    array([ 1.])

    >>> x = np.arange(9.0).reshape(3,3)
    >>> np.atleast_1d(x)
    array([[ 0.,  1.,  2.],
           [ 3.,  4.,  5.],
           [ 6.,  7.,  8.]])
    >>> np.atleast_1d(x) is x
    True

    >>> np.atleast_1d(1, [3, 4])
    [array([1]), array([3, 4])]

    """
    res = []
    for ary in arys:
        ary = asanyarray(ary)
        if len(ary.shape) == 0 :
            result = ary.reshape(1)
        else :
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res
Ejemplo n.º 4
0
def atleast_1d(*arys):
    """
    Convert inputs to arrays with at least one dimension.

    Scalar inputs are converted to 1-dimensional arrays, whilst
    higher-dimensional inputs are preserved.

    Parameters
    ----------
    arys1, arys2, ... : array_like
        One or more input arrays.

    Returns
    -------
    ret : ndarray
        An array, or sequence of arrays, each with ``a.ndim >= 1``.
        Copies are made only if necessary.

    See Also
    --------
    atleast_2d, atleast_3d

    Examples
    --------
    >>> np.atleast_1d(1.0)
    array([ 1.])

    >>> x = np.arange(9.0).reshape(3,3)
    >>> np.atleast_1d(x)
    array([[ 0.,  1.,  2.],
           [ 3.,  4.,  5.],
           [ 6.,  7.,  8.]])
    >>> np.atleast_1d(x) is x
    True

    >>> np.atleast_1d(1, [3, 4])
    [array([1]), array([3, 4])]

    """
    res = []
    for ary in arys:
        ary = asanyarray(ary)
        if len(ary.shape) == 0:
            result = ary.reshape(1)
        else:
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res
Ejemplo n.º 5
0
def atleast_2d(*arys):
    """
    View inputs as arrays with at least two dimensions.

    Parameters
    ----------
    arys1, arys2, ... : array_like
        One or more array-like sequences.  Non-array inputs are converted
        to arrays.  Arrays that already have two or more dimensions are
        preserved.

    Returns
    -------
    res, res2, ... : ndarray
        An array, or tuple of arrays, each with ``a.ndim >= 2``.
        Copies are avoided where possible, and views with two or more
        dimensions are returned.

    See Also
    --------
    atleast_1d, atleast_3d

    Examples
    --------
    >>> np.atleast_2d(3.0)
    array([[ 3.]])

    >>> x = np.arange(3.0)
    >>> np.atleast_2d(x)
    array([[ 0.,  1.,  2.]])
    >>> np.atleast_2d(x).base is x
    True

    >>> np.atleast_2d(1, [1, 2], [[1, 2]])
    [array([[1]]), array([[1, 2]]), array([[1, 2]])]

    """
    res = []
    for ary in arys:
        ary = asanyarray(ary)
        if len(ary.shape) == 0:
            result = ary.reshape(1, 1)
        elif len(ary.shape) == 1:
            result = ary[newaxis, :]
        else:
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res
Ejemplo n.º 6
0
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
    arr = asanyarray(a)

    # Upgrade bool, unsigned int, and int to float64
    if dtype is None and arr.dtype.kind in ['b','u','i']:
        ret = um.add.reduce(arr, axis=axis, dtype='f8',
                            out=out, keepdims=keepdims)
    else:
        ret = um.add.reduce(arr, axis=axis, dtype=dtype,
                            out=out, keepdims=keepdims)
    rcount = _count_reduce_items(arr, axis)
    if isinstance(ret, mu.ndarray):
        ret = um.true_divide(ret, rcount,
                        out=ret, casting='unsafe', subok=False)
    else:
        ret = ret / float(rcount)
    return ret
Ejemplo n.º 7
0
def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
    arr = asanyarray(a)

    # First compute the mean, saving 'rcount' for reuse later
    if dtype is None and arr.dtype.kind in ['b', 'u', 'i']:
        arrmean = um.add.reduce(arr, axis=axis, dtype='f8', keepdims=True)
    else:
        arrmean = um.add.reduce(arr, axis=axis, dtype=dtype, keepdims=True)
    rcount = _count_reduce_items(arr, axis)
    if isinstance(arrmean, mu.ndarray):
        arrmean = um.true_divide(arrmean,
                                 rcount,
                                 out=arrmean,
                                 casting='unsafe',
                                 subok=False)
    else:
        arrmean = arrmean / float(rcount)

    # arr - arrmean
    x = arr - arrmean

    # (arr - arrmean) ** 2
    if arr.dtype.kind == 'c':
        x = um.multiply(x, um.conjugate(x), out=x).real
    else:
        x = um.multiply(x, x, out=x)

    # add.reduce((arr - arrmean) ** 2, axis)
    ret = um.add.reduce(x, axis=axis, dtype=dtype, out=out, keepdims=keepdims)

    # add.reduce((arr - arrmean) ** 2, axis) / (n - ddof)
    if not keepdims and isinstance(rcount, mu.ndarray):
        rcount = rcount.squeeze(axis=axis)
    rcount -= ddof
    if isinstance(ret, mu.ndarray):
        ret = um.true_divide(ret,
                             rcount,
                             out=ret,
                             casting='unsafe',
                             subok=False)
    else:
        ret = ret / float(rcount)

    return ret
Ejemplo n.º 8
0
def _var(a, axis=None, dtype=None, out=None, ddof=0,
                            keepdims=False):
    arr = asanyarray(a)

    # First compute the mean, saving 'rcount' for reuse later
    if dtype is None and arr.dtype.kind in ['b','u','i']:
        arrmean = um.add.reduce(arr, axis=axis, dtype='f8', keepdims=True)
    else:
        arrmean = um.add.reduce(arr, axis=axis, dtype=dtype, keepdims=True)
    rcount = _count_reduce_items(arr, axis)
    if isinstance(arrmean, mu.ndarray):
        arrmean = um.true_divide(arrmean, rcount,
                            out=arrmean, casting='unsafe', subok=False)
    else:
        arrmean = arrmean / float(rcount)

    # arr - arrmean
    x = arr - arrmean

    # (arr - arrmean) ** 2
    if arr.dtype.kind == 'c':
        x = um.multiply(x, um.conjugate(x), out=x).real
    else:
        x = um.multiply(x, x, out=x)

    # add.reduce((arr - arrmean) ** 2, axis)
    ret = um.add.reduce(x, axis=axis, dtype=dtype, out=out, keepdims=keepdims)

    # add.reduce((arr - arrmean) ** 2, axis) / (n - ddof)
    if not keepdims and isinstance(rcount, mu.ndarray):
        rcount = rcount.squeeze(axis=axis)
    rcount -= ddof
    if isinstance(ret, mu.ndarray):
        ret = um.true_divide(ret, rcount,
                        out=ret, casting='unsafe', subok=False)
    else:
        ret = ret / float(rcount)

    return ret
Ejemplo n.º 9
0
def atleast_3d(*arys):
    """
    View inputs as arrays with at least three dimensions.

    Parameters
    ----------
    arys1, arys2, ... : array_like
        One or more array-like sequences.  Non-array inputs are converted to
        arrays.  Arrays that already have three or more dimensions are
        preserved.

    Returns
    -------
    res1, res2, ... : ndarray
        An array, or tuple of arrays, each with ``a.ndim >= 3``.  Copies are
        avoided where possible, and views with three or more dimensions are
        returned.  For example, a 1-D array of shape ``(N,)`` becomes a view
        of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a
        view of shape ``(M, N, 1)``.

    See Also
    --------
    atleast_1d, atleast_2d

    Examples
    --------
    >>> np.atleast_3d(3.0)
    array([[[ 3.]]])

    >>> x = np.arange(3.0)
    >>> np.atleast_3d(x).shape
    (1, 3, 1)

    >>> x = np.arange(12.0).reshape(4,3)
    >>> np.atleast_3d(x).shape
    (4, 3, 1)
    >>> np.atleast_3d(x).base is x
    True

    >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
    ...     print arr, arr.shape
    ...
    [[[1]
      [2]]] (1, 2, 1)
    [[[1]
      [2]]] (1, 2, 1)
    [[[1 2]]] (1, 1, 2)

    """
    res = []
    for ary in arys:
        ary = asanyarray(ary)
        if len(ary.shape) == 0:
            result = ary.reshape(1,1,1)
        elif len(ary.shape) == 1:
            result = ary[newaxis,:,newaxis]
        elif len(ary.shape) == 2:
            result = ary[:,:,newaxis]
        else:
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res
Ejemplo n.º 10
0
def atleast_3d(*arys):
    """
    View inputs as arrays with at least three dimensions.

    Parameters
    ----------
    arys1, arys2, ... : array_like
        One or more array-like sequences.  Non-array inputs are converted to
        arrays.  Arrays that already have three or more dimensions are
        preserved.

    Returns
    -------
    res1, res2, ... : ndarray
        An array, or tuple of arrays, each with ``a.ndim >= 3``.  Copies are
        avoided where possible, and views with three or more dimensions are
        returned.  For example, a 1-D array of shape ``(N,)`` becomes a view
        of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a
        view of shape ``(M, N, 1)``.

    See Also
    --------
    atleast_1d, atleast_2d

    Examples
    --------
    >>> np.atleast_3d(3.0)
    array([[[ 3.]]])

    >>> x = np.arange(3.0)
    >>> np.atleast_3d(x).shape
    (1, 3, 1)

    >>> x = np.arange(12.0).reshape(4,3)
    >>> np.atleast_3d(x).shape
    (4, 3, 1)
    >>> np.atleast_3d(x).base is x
    True

    >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
    ...     print arr, arr.shape
    ...
    [[[1]
      [2]]] (1, 2, 1)
    [[[1]
      [2]]] (1, 2, 1)
    [[[1 2]]] (1, 1, 2)

    """
    res = []
    for ary in arys:
        ary = asanyarray(ary)
        if len(ary.shape) == 0:
            result = ary.reshape(1, 1, 1)
        elif len(ary.shape) == 1:
            result = ary[newaxis, :, newaxis]
        elif len(ary.shape) == 2:
            result = ary[:, :, newaxis]
        else:
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res
Ejemplo n.º 11
0
def sort(a, axis=-1, kind='quicksort', order=None):
    """Return copy of 'a' sorted along the given axis.

    *Description*

    Perform an inplace sort along the given axis using the algorithm specified
    by the kind keyword.

    *Parameters*:

        a : array type
            Array to be sorted.

        axis : integer
            Axis to be sorted along. None indicates that the flattened array
            should be used. Default is -1.

        kind : string
            Sorting algorithm to use. Possible values are 'quicksort',
            'mergesort', or 'heapsort'. Default is 'quicksort'.

        order : list type or None
            When a is an array with fields defined, this argument specifies
            which fields to compare first, second, etc.  Not all fields need be
            specified.

    *Returns*:

        sorted_array : type is unchanged.

    *SeeAlso*:

        argsort
            Indirect sort
        lexsort
            Indirect stable sort on multiple keys
        searchsorted
            Find keys in sorted array

    *Notes*

        The various sorts are characterized by average speed, worst case
        performance, need for work space, and whether they are stable. A stable
        sort keeps items with the same key in the same relative order. The
        three available algorithms have the following properties:

        +-----------+-------+-------------+------------+-------+
        |    kind   | speed |  worst case | work space | stable|
        +===========+=======+=============+============+=======+
        | quicksort |   1   | O(n^2)      |     0      |   no  |
        +-----------+-------+-------------+------------+-------+
        | mergesort |   2   | O(n*log(n)) |    ~n/2    |   yes |
        +-----------+-------+-------------+------------+-------+
        | heapsort  |   3   | O(n*log(n)) |     0      |   no  |
        +-----------+-------+-------------+------------+-------+

        All the sort algorithms make temporary copies of the data when the sort
        is not along the last axis. Consequently, sorts along the last axis are
        faster and use less space than sorts along other axis.

    """
    if axis is None:
        a = asanyarray(a).flatten()
        axis = 0
    else:
        a = asanyarray(a).copy()
    a.sort(axis, kind, order)
    return a
Ejemplo n.º 12
0
def matrix_power(M,n):
    """
    Raise a square matrix to the (integer) power n.

    For positive integers n, the power is computed by repeated matrix
    squarings and matrix multiplications. If n=0, the identity matrix
    of the same type as M is returned. If n<0, the inverse is computed
    and raised to the exponent.

    Parameters
    ----------
    M : array_like
        Must be a square array (that is, of dimension two and with
        equal sizes).
    n : integer
        The exponent can be any integer or long integer, positive
        negative or zero.

    Returns
    -------
    M to the power n
        The return value is a an array the same shape and size as M;
        if the exponent was positive or zero then the type of the
        elements is the same as those of M. If the exponent was negative
        the elements are floating-point.

    Raises
    ------
    LinAlgException
        If the matrix is not numerically invertible, an exception is raised.

    See Also
    --------
    The matrix() class provides an equivalent function as the exponentiation
    operator.

    Examples
    --------
    >>> np.linalg.matrix_power(np.array([[0,1],[-1,0]]),10)
    array([[-1,  0],
           [ 0, -1]])

    """
    M = asanyarray(M)
    if len(M.shape) != 2 or M.shape[0] != M.shape[1]:
        raise ValueError("input must be a square array")
    if not issubdtype(type(n),int):
        raise TypeError("exponent must be an integer")

    from numpy.linalg import inv

    if n==0:
        M = M.copy()
        M[:] = identity(M.shape[0])
        return M
    elif n<0:
        M = inv(M)
        n *= -1

    result = M
    if n <= 3:
        for _ in range(n-1):
            result=N.dot(result,M)
        return result

    # binary decomposition to reduce the number of Matrix
    # multiplications for n > 3.
    beta = binary_repr(n)
    Z,q,t = M,0,len(beta)
    while beta[t-q-1] == '0':
        Z = N.dot(Z,Z)
        q += 1
    result = Z
    for k in range(q+1,t):
        Z = N.dot(Z,Z)
        if beta[t-k-1] == '1':
            result = N.dot(result,Z)
    return result
Ejemplo n.º 13
0
def matrix_power(M, n):
    """
    Raise a square matrix to the (integer) power n.

    For positive integers n, the power is computed by repeated matrix
    squarings and matrix multiplications. If n=0, the identity matrix
    of the same type as M is returned. If n<0, the inverse is computed
    and raised to the exponent.

    Parameters
    ----------
    M : array_like
        Must be a square array (that is, of dimension two and with
        equal sizes).
    n : integer
        The exponent can be any integer or long integer, positive
        negative or zero.

    Returns
    -------
    M to the power n
        The return value is a an array the same shape and size as M;
        if the exponent was positive or zero then the type of the
        elements is the same as those of M. If the exponent was negative
        the elements are floating-point.

    Raises
    ------
    LinAlgException
        If the matrix is not numerically invertible, an exception is raised.

    See Also
    --------
    The matrix() class provides an equivalent function as the exponentiation
    operator.

    Examples
    --------
    >>> np.linalg.matrix_power(np.array([[0,1],[-1,0]]),10)
    array([[-1,  0],
           [ 0, -1]])

    """
    M = asanyarray(M)
    if len(M.shape) != 2 or M.shape[0] != M.shape[1]:
        raise ValueError("input must be a square array")
    if not issubdtype(type(n), int):
        raise TypeError("exponent must be an integer")

    from numpy.linalg import inv

    if n == 0:
        M = M.copy()
        M[:] = identity(M.shape[0])
        return M
    elif n < 0:
        M = inv(M)
        n *= -1

    result = M
    if n <= 3:
        for _ in range(n - 1):
            result = N.dot(result, M)
        return result

    # binary decomposition to reduce the number of Matrix
    # multiplications for n > 3.
    beta = binary_repr(n)
    Z, q, t = M, 0, len(beta)
    while beta[t - q - 1] == '0':
        Z = N.dot(Z, Z)
        q += 1
    result = Z
    for k in range(q + 1, t):
        Z = N.dot(Z, Z)
        if beta[t - k - 1] == '1':
            result = N.dot(result, Z)
    return result