Ejemplo n.º 1
0
 def __pow__(self, other):
     shape = self.shape
     if len(shape) != 2 or shape[0] != shape[1]:
         raise TypeError, "matrix is not square"
     if type(other) in (type(1), type(1L)):
         if other==0:
             return matrix(N.identity(shape[0]))
         if other<0:
             x = self.I
             other=-other
         else:
             x=self
         result = x
         if other <= 3:
             while(other>1):
                 result=result*x
                 other=other-1
             return result
         # binary decomposition to reduce the number of Matrix
         #  Multiplies for other > 3.
         beta = binary_repr(other)
         t = len(beta)
         Z,q = x.copy(),0
         while beta[t-q-1] == '0':
             Z *= Z
             q += 1
         result = Z.copy()
         for k in range(q+1,t):
             Z *= Z
             if beta[t-k-1] == '1':
                 result *= Z
         return result
Ejemplo n.º 2
0
 def __pow__(self, other):
     shape = self.shape
     if len(shape) != 2 or shape[0] != shape[1]:
         raise TypeError, "matrix is not square"
     if type(other) in (type(1), type(1L)):
         if other==0:
             return matrix(N.identity(shape[0]))
         if other<0:
             x = self.I
             other=-other
         else:
             x=self
         result = x
         if other <= 3:
             while(other>1):
                 result=result*x
                 other=other-1
             return result
         # binary decomposition to reduce the number of Matrix
         #  Multiplies for other > 3.
         beta = binary_repr(other)
         t = len(beta)
         Z,q = x.copy(),0
         while beta[t-q-1] == '0':
             Z *= Z
             q += 1
         result = Z.copy()
         for k in range(q+1,t):
             Z *= Z
             if beta[t-k-1] == '1':
                 result *= Z
         return result
     else:
         raise TypeError, "exponent must be an integer"
Ejemplo n.º 3
0
def make(net,name='System',neurons=100,A=[[0]],tau_feedback=0.1):
    A=numeric.array(A)
    assert len(A.shape)==2
    assert A.shape[0]==A.shape[1]
    
    dimensions=A.shape[0]
    state=net.make(name,neurons,dimensions)
    Ap=A*tau_feedback+numeric.identity(dimensions)

    net.connect(state,state,transform=Ap,pstc=tau_feedback)
    if net.network.getMetaData("linear") == None:
        net.network.setMetaData("linear", HashMap())
    linears = net.network.getMetaData("linear")

    linear=HashMap(4)
    linear.put("name", name)
    linear.put("neurons", neurons)
    linear.put("A", MU.clone(A))
    linear.put("tau_feedback", tau_feedback)

    linears.put(name, linear)

    if net.network.getMetaData("templates") == None:
        net.network.setMetaData("templates", ArrayList())
    templates = net.network.getMetaData("templates")
    templates.add(name)

    if net.network.getMetaData("templateProjections") == None:
        net.network.setMetaData("templateProjections", HashMap())
    templateproj = net.network.getMetaData("templateProjections")
    templateproj.put(name, name)
Ejemplo n.º 4
0
def make(net, name='System', neurons=100, A=[[0]], tau_feedback=0.1):
    A = numeric.array(A)
    assert len(A.shape) == 2
    assert A.shape[0] == A.shape[1]

    dimensions = A.shape[0]
    state = net.make(name, neurons, dimensions)
    Ap = A * tau_feedback + numeric.identity(dimensions)

    net.connect(state, state, transform=Ap, pstc=tau_feedback)
    if net.network.getMetaData("linear") == None:
        net.network.setMetaData("linear", HashMap())
    linears = net.network.getMetaData("linear")

    linear = HashMap(4)
    linear.put("name", name)
    linear.put("neurons", neurons)
    linear.put("A", MU.clone(A))
    linear.put("tau_feedback", tau_feedback)

    linears.put(name, linear)

    if net.network.getMetaData("templates") == None:
        net.network.setMetaData("templates", ArrayList())
    templates = net.network.getMetaData("templates")
    templates.add(name)

    if net.network.getMetaData("templateProjections") == None:
        net.network.setMetaData("templateProjections", HashMap())
    templateproj = net.network.getMetaData("templateProjections")
    templateproj.put(name, name)
Ejemplo n.º 5
0
def make(net, name='System', neurons=100, A=[[0]], tau_feedback=0.1):
    A = numeric.array(A)
    assert len(A.shape) == 2
    assert A.shape[0] == A.shape[1]

    dimensions = A.shape[0]
    state = net.make(name, neurons, dimensions)
    Ap = A * tau_feedback + numeric.identity(dimensions)

    net.connect(state, state, transform=Ap, pstc=tau_feedback)
Ejemplo n.º 6
0
def make(net,name='System',neurons=100,A=[[0]],tau_feedback=0.1):
    A=numeric.array(A)
    assert len(A.shape)==2
    assert A.shape[0]==A.shape[1]
    
    dimensions=A.shape[0]
    state=net.make(name,neurons,dimensions)
    Ap=A*tau_feedback+numeric.identity(dimensions)

    net.connect(state,state,transform=Ap,pstc=tau_feedback)
Ejemplo n.º 7
0
def matrix_power(M,n):
    """Raise a square matrix to the (integer) power n.

    For positive integers n, the power is computed by repeated matrix
    squarings and matrix multiplications. If n=0, the identity matrix
    of the same type as M is returned. If n<0, the inverse is computed
    and raised to the exponent.

    Parameters
    ----------
    M : array-like
        Must be a square array (that is, of dimension two and with
        equal sizes).
    n : integer
        The exponent can be any integer or long integer, positive
        negative or zero.

    Returns
    -------
    M to the power n
        The return value is a an array the same shape and size as M;
        if the exponent was positive or zero then the type of the
        elements is the same as those of M. If the exponent was negative
        the elements are floating-point.

    Raises
    ------
    LinAlgException
        If the matrix is not numerically invertible, an exception is raised.

    See Also
    --------
    The matrix() class provides an equivalent function as the exponentiation
    operator.

    Examples
    --------
    >>> matrix_power(array([[0,1],[-1,0]]),10)
    array([[-1,  0],
           [ 0, -1]])
    """
    if len(M.shape) != 2 or M.shape[0] != M.shape[1]:
        raise ValueError("input must be a square array")
    if not issubdtype(type(n),int):
        raise TypeError("exponent must be an integer")

    from numpy.linalg import inv

    if n==0:
        M = M.copy()
        M[:] = identity(M.shape[0])
        return M
    elif n<0:
        M = inv(M)
        n *= -1

    result = M
    if n <= 3:
        for _ in range(n-1):
            result=N.dot(result,M)
        return result

    # binary decomposition to reduce the number of Matrix
    # multiplications for n > 3.
    beta = binary_repr(n)
    Z,q,t = M,0,len(beta)
    while beta[t-q-1] == '0':
        Z = N.dot(Z,Z)
        q += 1
    result = Z
    for k in range(q+1,t):
        Z = N.dot(Z,Z)
        if beta[t-k-1] == '1':
            result = N.dot(result,Z)
    return result
Ejemplo n.º 8
0
def matrix_power(M,n):
    """
    Raise a square matrix to the (integer) power n.

    For positive integers n, the power is computed by repeated matrix
    squarings and matrix multiplications. If n=0, the identity matrix
    of the same type as M is returned. If n<0, the inverse is computed
    and raised to the exponent.

    Parameters
    ----------
    M : array_like
        Must be a square array (that is, of dimension two and with
        equal sizes).
    n : integer
        The exponent can be any integer or long integer, positive
        negative or zero.

    Returns
    -------
    M to the power n
        The return value is a an array the same shape and size as M;
        if the exponent was positive or zero then the type of the
        elements is the same as those of M. If the exponent was negative
        the elements are floating-point.

    Raises
    ------
    LinAlgException
        If the matrix is not numerically invertible, an exception is raised.

    See Also
    --------
    The matrix() class provides an equivalent function as the exponentiation
    operator.

    Examples
    --------
    >>> np.linalg.matrix_power(np.array([[0,1],[-1,0]]),10)
    array([[-1,  0],
           [ 0, -1]])

    """
    if len(M.shape) != 2 or M.shape[0] != M.shape[1]:
        raise ValueError("input must be a square array")
    if not issubdtype(type(n),int):
        raise TypeError("exponent must be an integer")

    from numpy.linalg import inv

    if n==0:
        M = M.copy()
        M[:] = identity(M.shape[0])
        return M
    elif n<0:
        M = inv(M)
        n *= -1

    result = M
    if n <= 3:
        for _ in range(n-1):
            result=N.dot(result,M)
        return result

    # binary decomposition to reduce the number of Matrix
    # multiplications for n > 3.
    beta = binary_repr(n)
    Z,q,t = M,0,len(beta)
    while beta[t-q-1] == '0':
        Z = N.dot(Z,Z)
        q += 1
    result = Z
    for k in range(q+1,t):
        Z = N.dot(Z,Z)
        if beta[t-k-1] == '1':
            result = N.dot(result,Z)
    return result
Ejemplo n.º 9
0
         d2_2, d2_2i, d3_3, d3_3i)


# Matrix(), shape()
for data in datas:
    m = numeric.Matrix(data)
    if m.shape() != (len(data), len(data[0])):
        nb_errors += 1
        print('error: constructor size: %s' % data)
    if m_to_l(m) != data:
        nb_errors += 1
        print('error: constructor value: %s' % data)


# indentity()
mi1 = numeric.identity(1)
if mi1.shape() != (1, 1):
    nb_errors += 1
    print('error: identity size')

if m_to_l(mi1) != di1:
    nb_errors += 1
    print('error: identity value')

mi5 = numeric.identity(5)
if mi5.shape() != (5, 5):
    nb_errors += 1
    print('error: identity size')

if m_to_l(mi5) != di5:
    nb_errors += 1
Ejemplo n.º 10
0
def main():  # pylint: disable=too-many-locals,too-many-branches,too-many-statements  # noqa
    # type: () -> None
    """Perform succession of tests."""
    if SIMPLEGUICS2PYGAME:
        from sys import argv  # pylint: disable=import-outside-toplevel

        if len(argv) != 2:
            print('Test numeric.Matrix ...\n')
    else:
        print('Test numeric.Matrix ...\n')

    nb_errors = 0

    dz5_3 = [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0],
             [0, 0, 0]]  # type: List[List[Union[int, float]]]

    dz3_5 = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0]]  # type: List[List[Union[int, float]]]

    di1 = [[1]]  # type: List[List[Union[int, float]]]

    di5 = [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0],
           [0, 0, 0, 0, 1]]  # type: List[List[Union[int, float]]]

    d5_3 = [[0, -1, 2], [-3, 4, -5], [6, -7, 8], [-9, 10, -11],
            [12, -13, 14]]  # type: List[List[Union[int, float]]]

    d5_3t = [[0, -3, 6, -9, 12], [-1, 4, -7, 10, -13],
             [2, -5, 8, -11, 14]]  # type: List[List[Union[int, float]]]

    d3_5 = [[0, -1, 2, -3, 4], [-5, 6, -7, 8, -9],
            [10, -11, 12, -13, 14]]  # type: List[List[Union[int, float]]]

    d3_5t = [[0, -5, 10], [-1, 6, -11], [2, -7, 12], [-3, 8, -13],
             [4, -9, 14]]  # type: List[List[Union[int, float]]]

    d2_2 = [[1, 2], [3, 4]]  # type: List[List[Union[int, float]]]

    d2_2i = [[-2, 1], [1.5, -0.5]]  # type: List[List[Union[int, float]]]

    d3_3 = [[2, -1, 0], [-1, 2, -1],
            [0, -1, 2]]  # type: List[List[Union[int, float]]]

    d3_3i = [[0.75, 0.5, 0.25], [0.5, 1, 0.5],
             [0.25, 0.5, 0.75]]  # type: List[List[Union[int, float]]]

    datas = (dz5_3, dz3_5, di1, di5, d5_3, d5_3t, d3_5, d3_5t, d2_2, d2_2i,
             d3_3, d3_3i
             )  # type: Tuple[List[List[Union[int, float]]], ...]  # noqa

    # Matrix(), shape()
    for data in datas:
        m = numeric.Matrix(data)
        if m.shape() != (len(data), len(data[0])):
            nb_errors += 1
            print('error: constructor size: %s' % data)
        if m_to_l(m) != data:
            nb_errors += 1
            print('error: constructor value: %s' % data)

    # indentity()
    mi1 = numeric.identity(1)
    if mi1.shape() != (1, 1):
        nb_errors += 1
        print('error: identity size')

    if m_to_l(mi1) != di1:
        nb_errors += 1
        print('error: identity value')

    mi5 = numeric.identity(5)
    if mi5.shape() != (5, 5):
        nb_errors += 1
        print('error: identity size')

    if m_to_l(mi5) != di5:
        nb_errors += 1
        print('error: identity value')

    # []
    for data in datas:
        m = numeric.Matrix(data)
        for i, row in enumerate(data):
            for j in range(len(data[0])):
                if m[i, j] != row[j]:
                    nb_errors += 1
                    print('error: [%i, %i]: %s' % (i, j, data))

    # set []
    for data in datas:
        m = numeric.Matrix(data)
        m2 = numeric.Matrix(data)  # pylint: disable=invalid-name
        for i in range(len(data)):
            for j in range(len(data[0])):
                m2[i, j] = 666
                if not isinstance(m2[i, j], float) or (m2[i, j] != 666):
                    nb_errors += 1
                    print('error: [%i, %i] = 666: %s' % (i, j, data))
                    print(m2)

                m2[i, j] = m[i, j]
                if not m_eq(m, m2):
                    nb_errors += 1
                    print('error: [%i, %i] = old: %s' % (i, j, data))
                    print(m2)

    # copy()
    for data in datas:
        m = numeric.Matrix(data)
        m2 = m.copy()  # pylint: disable=invalid-name

        if not m_eq(m, m2):
            nb_errors += 1
            print('error: [%i, %i] = old: %s' % (i, j, data))
            print(m)
            print(m2)

        m2[0, 0] = 666
        if m_eq(m, m2) or (m[0, 0] == 666):
            nb_errors += 1
            print('error: [%i, %i] = old: %s' % (i, j, data))
            print(m)
            print(m2)

    # getrow()
    for data in datas:
        m = numeric.Matrix(data)

        for i, good_row in enumerate(data):
            row = m_to_l(m.getrow(i))[0]

            if len(row) != len(data[0]):
                nb_errors += 1
                print('error: getrow size %i %s %s' % (i, row, good_row))

            if row != good_row:
                nb_errors += 1
                print('error: getrow %i %s %s' % (i, row, good_row))

            for j in range(len(data[0])):
                if row[j] != good_row[j]:
                    nb_errors += 1
                    print('error: getrow != [%i, %i]' % (i, j))

    # getcol()
    for data in datas:
        m = numeric.Matrix(data)

        for j in range(len(data[0])):
            col = m_to_l(m.getcol(j))[0]
            if len(col) != len(data):
                nb_errors += 1
                print('error: getcol size %i %s %s' % (i, col, data))

            for i, row in enumerate(data):
                if col[i] != row[j]:
                    nb_errors += 1
                    print('error: getcol != [%i, %i]' % (i, j))

    # scale(), +, -
    # (in CodeSkulptor3 method scale() doesn't exist
    #  and * is the operator to multiply by a scalar)
    for data in datas:
        m = numeric.Matrix(data)
        adds = numeric.Matrix(data)
        if codeskulptor_lib.codeskulptor_version() == 3:
            subs = numeric.Matrix(data) * -1
        else:
            subs = numeric.Matrix(data).scale(-1)
        for k in range(1, 10):
            if codeskulptor_lib.codeskulptor_version() == 3:
                ms = m * k  # pylint: disable=invalid-name
            else:
                ms = m.scale(k)  # pylint: disable=invalid-name
            if not m_eq(ms, adds):
                nb_errors += 1
                print('error: scale != +: %i %s' % (k, data))
                print(ms)
                print(adds)
            adds = adds + m

            if codeskulptor_lib.codeskulptor_version() == 3:
                ms = m * -k  # pylint: disable=invalid-name
            else:
                ms = m.scale(-k)  # pylint: disable=invalid-name
            if not m_eq(ms, subs):
                nb_errors += 1
                print('error: scale != -: %i %s' % (k, data))
                print(ms)
                print(subs)
            subs = subs - m

    if codeskulptor_lib.codeskulptor_version() != 3:
        # *
        # (in CodeSkulptor3 * is the operator to multiply by a scalar
        # add @ the operator to multiply two matrices)
        m = numeric.Matrix(d5_3) * numeric.Matrix(d3_5)
        if m_to_l(m) != [[25, -28, 31, -34, 37], [-70, 82, -94, 106, -118],
                         [115, -136, 157, -178, 199],
                         [-160, 190, -220, 250, -280],
                         [205, -244, 283, -322, 361]]:
            nb_errors += 1
            print('error: (5, 3) * (3, 5)')
            print(m)

        m = numeric.Matrix(d3_5) * numeric.Matrix(d5_3)
        if m_to_l(m) != [[90, -100, 110], [-240, 275, -310], [390, -450, 510]]:
            nb_errors += 1
            print('error: (3, 5) * (5, 3)')
            print(m)

        for data in datas:
            m = numeric.Matrix(data)
            m2 = m * numeric.identity(len(data[0]))  # pylint: disable=invalid-name  # noqa
            if not m_eq(m, m2):
                nb_errors += 1
                print('error: *: %s' % data)
                print(m2)

            m2 = numeric.identity(len(data)) * m  # pylint: disable=invalid-name  # noqa
            if not m_eq(m, m2):
                nb_errors += 1
                print('error: *: %s' % data)
                print(m2)

        a = numeric.Matrix(d2_2)
        b = numeric.Matrix(d2_2i)
        if not m_eq(a * b, numeric.identity(2)):
            nb_errors += 1
            print('error: a * a^(-1)')
            print(a * b)
        if not m_eq(b * a, numeric.identity(2)):
            nb_errors += 1
            print('error: a^(-1) * a')
            print(b * a)

        a = numeric.Matrix(d3_3)
        b = numeric.Matrix(d3_3i)
        if not m_eq(a * b, numeric.identity(3)):
            nb_errors += 1
            print('error: a * a^(-1)')
            print(a * b)
        if not m_eq(b * a, numeric.identity(3)):
            nb_errors += 1
            print('error: a^(-1) * a')
            print(b * a)

    # summation()
    for k in range(1, 10):
        m = numeric.identity(k)
        if m.summation() != k:
            nb_errors += 1
            print('error: sum %i %f' % (k, m.summation()))

    m = numeric.Matrix(dz5_3)
    if m.summation() != 0:
        nb_errors += 1
        print('error: sum %f' % m.summation())

    m = numeric.Matrix(d5_3)
    if m.summation() != 7:
        nb_errors += 1
        print('error: sum %f' % m.summation())

    m = numeric.Matrix(d3_5)
    if m.summation() != 7:
        nb_errors += 1
        print('error: sum %f' % m.summation())

    # abs()
    m = numeric.Matrix(dz5_3).abs()
    if not m_eq(m, numeric.Matrix(dz5_3)):
        nb_errors += 1
        print('error: abs(0)')
        print(m)

    for k in range(1, 10):
        m = numeric.identity(k).abs()
        if not m_eq(m, numeric.identity(k)):
            print('error: abs(identity(%i))' % k)
            print(m)

    m = numeric.Matrix(d5_3).abs()
    if m.summation() != 105:
        nb_errors += 1
        print('error: abs')
        print(m)

    m = numeric.Matrix(d3_5).abs()
    if m.summation() != 105:
        nb_errors += 1
        print('error: abs')
        print(m)

    # transpose()
    m = numeric.Matrix(dz5_3).transpose()
    if not m_eq(m, numeric.Matrix(dz3_5)):
        nb_errors += 1
        print('error: transpose(0)')
        print(m)

    for k in range(1, 10):
        m = numeric.identity(k).transpose()
        if not m_eq(m, numeric.identity(k)):
            print('error: transpose(identity(%i))' % k)
            print(m)

    m = numeric.Matrix(d5_3).transpose()
    if not m_eq(m, numeric.Matrix(d5_3t)):
        nb_errors += 1
        print('error: transpose')
        print(numeric.Matrix(d5_3))
        print(m)

    m = numeric.Matrix(d3_5).transpose()
    if not m_eq(m, numeric.Matrix(d3_5t)):
        nb_errors += 1
        print('error: transpose')
        print(numeric.Matrix(d3_5))
        print(m)

    # inverse()
    for k in range(1, 10):
        m = numeric.identity(k).inverse()
        if not m_eq(m, numeric.identity(k)):
            print('error: inverse(identity(%i))' % k)
            print(m)

        if codeskulptor_lib.codeskulptor_version() == 3:
            m = numeric.identity(k) * 5
            m = m.inverse()
            if not m_eq(m, numeric.identity(k) * (1.0 / 5)):
                print('error: inverse(identity(%i)*5)' % k)
                print(m)
        else:
            m = numeric.identity(k).scale(5).inverse()
            if not m_eq(m, numeric.identity(k).scale(1.0 / 5)):
                print('error: inverse(identity(%i)*5)' % k)
                print(m)

        m = numeric.identity(k)
        m[0, 0] = 0
        try:
            m = m.inverse()
            print('error: not inversible first: %i' % k)
            print(m)
        except ValueError:
            pass

        m = numeric.identity(k)
        m[k - 1, k - 1] = 0
        try:
            m = m.inverse()
            print('error: not inversible last: %i' % k)
            print(m)
        except ValueError:
            pass

    mi = numeric.Matrix(d2_2).inverse()  # pylint: disable=invalid-name
    if not m_eq(mi, numeric.Matrix(d2_2i), False):
        print('error: inverse 1')
        print(mi)
        print(numeric.Matrix(d2_2i))

    mi = numeric.Matrix(d2_2i).inverse()  # pylint: disable=invalid-name
    if not m_eq(mi, numeric.Matrix(d2_2), False):
        print('error: inverse 2')
        print(mi)
        print(numeric.Matrix(d2_2))

    # Result
    if nb_errors == 0:
        if not SIMPLEGUICS2PYGAME or (len(argv) != 2):
            print('Ok')
    else:
        print('\n%i errors founded' % nb_errors)

        exit(nb_errors)  # pylint: disable=consider-using-sys-exit
Ejemplo n.º 11
0
datas = (dz5_3, dz3_5, di1, di5, d5_3, d5_3t, d3_5, d3_5t, d2_2, d2_2i, d3_3,
         d3_3i)

# Matrix(), shape()
for data in datas:
    m = numeric.Matrix(data)
    if m.shape() != (len(data), len(data[0])):
        nb_errors += 1
        print('error: constructor size: %s' % data)
    if m_to_l(m) != data:
        nb_errors += 1
        print('error: constructor value: %s' % data)

# indentity()
mi1 = numeric.identity(1)
if mi1.shape() != (1, 1):
    nb_errors += 1
    print('error: identity size')

if m_to_l(mi1) != di1:
    nb_errors += 1
    print('error: identity value')

mi5 = numeric.identity(5)
if mi5.shape() != (5, 5):
    nb_errors += 1
    print('error: identity size')

if m_to_l(mi5) != di5:
    nb_errors += 1