def rk4(derivs, y0, t): """ Integrate 1D or ND system of ODEs from initial state y0 at sample times t. derivs returns the derivative of the system and has the signature dy = derivs(yi, ti) Example 1 : ## 2D system # Numeric solution def derivs6(x,t): d1 = x[0] + 2*x[1] d2 = -3*x[0] + 4*x[1] return (d1, d2) dt = 0.0005 t = arange(0.0, 2.0, dt) y0 = (1,2) yout = rk4(derivs6, y0, t) Example 2: ## 1D system alpha = 2 def derivs(x,t): return -alpha*x + exp(-t) y0 = 1 yout = rk4(derivs, y0, t) """ try: Ny = len(y0) except TypeError: yout = zeros( (len(t),), Float) else: yout = zeros( (len(t), Ny), Float) yout[0] = y0 i = 0 for i in arange(len(t)-1): thist = t[i] dt = t[i+1] - thist dt2 = dt/2.0 y0 = yout[i] k1 = asarray(derivs(y0, thist)) k2 = asarray(derivs(y0 + dt2*k1, thist+dt2)) k3 = asarray(derivs(y0 + dt2*k2, thist+dt2)) k4 = asarray(derivs(y0 + dt*k3, thist+dt)) yout[i+1] = y0 + dt/6.0*(k1 + 2*k2 + 2*k3 + k4) return yout
def rk4(derivs, y0, t): """ Integrate 1D or ND system of ODEs from initial state y0 at sample times t. derivs returns the derivative of the system and has the signature dy = derivs(yi, ti) Example 1 : ## 2D system # Numeric solution def derivs6(x,t): d1 = x[0] + 2*x[1] d2 = -3*x[0] + 4*x[1] return (d1, d2) dt = 0.0005 t = arange(0.0, 2.0, dt) y0 = (1,2) yout = rk4(derivs6, y0, t) Example 2: ## 1D system alpha = 2 def derivs(x,t): return -alpha*x + exp(-t) y0 = 1 yout = rk4(derivs, y0, t) """ try: Ny = len(y0) except TypeError: yout = zeros((len(t), ), Float) else: yout = zeros((len(t), Ny), Float) yout[0] = y0 i = 0 for i in arange(len(t) - 1): thist = t[i] dt = t[i + 1] - thist dt2 = dt / 2.0 y0 = yout[i] k1 = asarray(derivs(y0, thist)) k2 = asarray(derivs(y0 + dt2 * k1, thist + dt2)) k3 = asarray(derivs(y0 + dt2 * k2, thist + dt2)) k4 = asarray(derivs(y0 + dt * k3, thist + dt)) yout[i + 1] = y0 + dt / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4) return yout
def __init__(self, nmax): 'buffer up to nmax points' self._xa = nx.zeros((nmax, ), typecode=nx.Float) self._ya = nx.zeros((nmax, ), typecode=nx.Float) self._xs = nx.zeros((nmax, ), typecode=nx.Float) self._ys = nx.zeros((nmax, ), typecode=nx.Float) self._ind = 0 self._nmax = nmax self.dataLim = None self.callbackd = {}
def __init__(self, nmax): 'buffer up to nmax points' self._xa = nx.zeros((nmax,), typecode=nx.Float) self._ya = nx.zeros((nmax,), typecode=nx.Float) self._xs = nx.zeros((nmax,), typecode=nx.Float) self._ys = nx.zeros((nmax,), typecode=nx.Float) self._ind = 0 self._nmax = nmax self.dataLim = None self.callbackd = {}
def unmasked_index_ranges(mask, compressed = True): ''' Calculate the good data ranges in a masked 1-D array, based on mask. Returns Nx2 array with each row the start and stop indices for slices of the compressed array corresponding to each of N uninterrupted runs of unmasked values. If optional argument compressed is False, it returns the start and stop indices into the original array, not the compressed array. In either case, an empty array is returned if there are no unmasked values. Example: y = ma.array(arange(5), mask = [0,0,1,0,0]) #ii = unmasked_index_ranges(y.mask()) ii = unmasked_index_ranges(ma.getmask(y)) # returns [[0,2,] [2,4,]] y.compressed().filled()[ii[1,0]:ii[1,1]] # returns array [3,4,] # (The 'filled()' method converts the masked array to a numerix array.) #i0, i1 = unmasked_index_ranges(y.mask(), compressed=False) i0, i1 = unmasked_index_ranges(ma.getmask(y), compressed=False) # returns [[0,3,] [2,5,]] y.filled()[ii[1,0]:ii[1,1]] # returns array [3,4,] ''' m = concatenate(((1,), mask, (1,))) indices = arange(len(mask) + 1) mdif = m[1:] - m[:-1] i0 = compress(mdif == -1, indices) i1 = compress(mdif == 1, indices) assert len(i0) == len(i1) if not compressed: if len(i1): return concatenate((i0[:, ma.NewAxis], i1[:, ma.NewAxis]), axis=1) else: return zeros((0,0), 'i') seglengths = i1 - i0 breakpoints = cumsum(seglengths) try: ic0 = concatenate(((0,), breakpoints[:-1])) ic1 = breakpoints return concatenate((ic0[:, ma.NewAxis], ic1[:, ma.NewAxis]), axis=1) except: return zeros((0,0), 'i')
def unmasked_index_ranges(mask, compressed=True): ''' Calculate the good data ranges in a masked 1-D array, based on mask. Returns Nx2 array with each row the start and stop indices for slices of the compressed array corresponding to each of N uninterrupted runs of unmasked values. If optional argument compressed is False, it returns the start and stop indices into the original array, not the compressed array. In either case, an empty array is returned if there are no unmasked values. Example: y = ma.array(arange(5), mask = [0,0,1,0,0]) #ii = unmasked_index_ranges(y.mask()) ii = unmasked_index_ranges(ma.getmask(y)) # returns [[0,2,] [2,4,]] y.compressed().filled()[ii[1,0]:ii[1,1]] # returns array [3,4,] # (The 'filled()' method converts the masked array to a numerix array.) #i0, i1 = unmasked_index_ranges(y.mask(), compressed=False) i0, i1 = unmasked_index_ranges(ma.getmask(y), compressed=False) # returns [[0,3,] [2,5,]] y.filled()[ii[1,0]:ii[1,1]] # returns array [3,4,] ''' m = concatenate(((1, ), mask, (1, ))) indices = arange(len(mask) + 1) mdif = m[1:] - m[:-1] i0 = compress(mdif == -1, indices) i1 = compress(mdif == 1, indices) assert len(i0) == len(i1) if not compressed: if len(i1): return concatenate((i0[:, ma.NewAxis], i1[:, ma.NewAxis]), axis=1) else: return zeros((0, 0), 'i') seglengths = i1 - i0 breakpoints = cumsum(seglengths) try: ic0 = concatenate(((0, ), breakpoints[:-1])) ic1 = breakpoints return concatenate((ic0[:, ma.NewAxis], ic1[:, ma.NewAxis]), axis=1) except: return zeros((0, 0), 'i')
def psd(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0): """ The power spectral density by Welches average periodogram method. The vector x is divided into NFFT length segments. Each segment is detrended by function detrend and windowed by function window. noperlap gives the length of the overlap between segments. The absolute(fft(segment))**2 of each segment are averaged to compute Pxx, with a scaling to correct for power loss due to windowing. Fs is the sampling frequency. -- NFFT must be a power of 2 -- detrend and window are functions, unlike in matlab where they are vectors. -- if length x < NFFT, it will be zero padded to NFFT Returns the tuple Pxx, freqs Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ if NFFT % 2: raise ValueError, 'NFFT must be a power of 2' # zero pad x up to NFFT if it is shorter than NFFT if len(x)<NFFT: n = len(x) x = resize(x, (NFFT,)) x[n:] = 0 # for real x, ignore the negative frequencies if x.typecode()==Complex: numFreqs = NFFT else: numFreqs = NFFT//2+1 windowVals = window(ones((NFFT,),x.typecode())) step = NFFT-noverlap ind = range(0,len(x)-NFFT+1,step) n = len(ind) Pxx = zeros((numFreqs,n), Float) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i]+NFFT] thisX = windowVals*detrend(thisX) fx = absolute(fft(thisX))**2 Pxx[:,i] = divide(fx[:numFreqs], norm(windowVals)**2) # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2 if n>1: Pxx = mean(Pxx,1) freqs = Fs/NFFT*arange(numFreqs) Pxx.shape = len(freqs), return Pxx, freqs
def __call__(self, X, alpha=1.0): """ X is either a scalar or an array (of any dimension). If scalar, a tuple of rgba values is returned, otherwise an array with the new shape = oldshape+(4,). Any values that are outside the 0,1 interval are clipped to that interval before generating rgb values. Alpha must be a scalar """ if not self._isinit: self._init() alpha = min(alpha, 1.0) # alpha must be between 0 and 1 alpha = max(alpha, 0.0) if type(X) in [IntType, FloatType]: vtype = 'scalar' xa = array([X]) else: vtype = 'array' xa = asarray(X) # assume the data is properly normalized #xa = where(xa>1.,1.,xa) #xa = where(xa<0.,0.,xa) xa = (xa *(self.N-1)).astype(Int) rgba = zeros(xa.shape+(4,), Float) rgba[...,0] = take(self._red_lut, xa) rgba[...,1] = take(self._green_lut, xa) rgba[...,2] = take(self._blue_lut, xa) rgba[...,3] = alpha if vtype == 'scalar': rgba = tuple(rgba[0,:]) return rgba
def _init(self): rgb = array([colorConverter.to_rgb(c) for c in self.colors], typecode=Float) self._lut = zeros((self.N + 3, 4), Float) self._lut[:-3, :-1] = rgb self._isinit = True self._set_extremes()
def longest_ones(x): """ return the indicies of the longest stretch of contiguous ones in x, assuming x is a vector of zeros and ones. If there are two equally long stretches, pick the first """ x = asarray(x) if len(x) == 0: return array([]) #print 'x', x ind = find(x == 0) if len(ind) == 0: return arange(len(x)) if len(ind) == len(x): return array([]) y = zeros((len(x) + 2, ), Int) y[1:-1] = x d = diff(y) #print 'd', d up = find(d == 1) dn = find(d == -1) #print 'dn', dn, 'up', up, ind = find(dn - up == max(dn - up)) # pick the first if iterable(ind): ind = ind[0] ind = arange(up[ind], dn[ind]) return ind
def longest_ones(x): """ return the indicies of the longest stretch of contiguous ones in x, assuming x is a vector of zeros and ones. If there are two equally long stretches, pick the first """ x = asarray(x) if len(x)==0: return array([]) #print 'x', x ind = find(x==0) if len(ind)==0: return arange(len(x)) if len(ind)==len(x): return array([]) y = zeros( (len(x)+2,), Int) y[1:-1] = x d = diff(y) #print 'd', d up = find(d == 1); dn = find(d == -1); #print 'dn', dn, 'up', up, ind = find( dn-up == max(dn - up)) # pick the first if iterable(ind): ind = ind[0] ind = arange(up[ind], dn[ind]) return ind
def __call__(self, X, alpha=1.0): """ X is either a scalar or an array (of any dimension). If scalar, a tuple of rgba values is returned, otherwise an array with the new shape = oldshape+(4,). Any values that are outside the 0,1 interval are clipped to that interval before generating rgb values. Alpha must be a scalar """ alpha = min(alpha, 1.0) # alpha must be between 0 and 1 alpha = max(alpha, 0.0) if type(X) in [IntType, FloatType]: vtype = 'scalar' xa = array([X]) else: vtype = 'array' xa = array(X) xa = where(xa>1.,1.,xa) xa = where(xa<0.,0.,xa) xa = (xa *(self.N-1)).astype(Int) rgba = zeros(xa.shape+(4,), Float) rgba[...,0] = take(self._red_lut, xa) rgba[...,1] = take(self._green_lut, xa) rgba[...,2] = take(self._blue_lut, xa) rgba[...,3] = alpha if vtype == 'scalar': rgba = tuple(rgba[0,:]) return rgba
def get_sparse_matrix(M,N,frac=0.1): 'return a MxN sparse matrix with frac elements randomly filled' data = zeros((M,N))*0. for i in range(int(M*N*frac)): x = random.randint(0,M-1) y = random.randint(0,N-1) data[x,y] = rand() return data
def get_sparse_matrix(M, N, frac=0.1): 'return a MxN sparse matrix with frac elements randomly filled' data = zeros((M, N)) * 0. for i in range(int(M * N * frac)): x = random.randint(0, M - 1) y = random.randint(0, N - 1) data[x, y] = rand() return data
def movavg(x, n): 'compute the len(n) moving average of x' n = int(n) N = len(x) assert (N > n) y = zeros(N - (n - 1), Float) for i in range(n): y += x[i:N - (n - 1) + i] y /= float(n) return y
def movavg(x,n): 'compute the len(n) moving average of x' n = int(n) N = len(x) assert(N>n) y = zeros(N-(n-1),Float) for i in range(n): y += x[i:N-(n-1)+i] y /= float(n) return y
def symbols(epsoutfile): y = arange(5)/5.0+0.1 g = pyxgraph(xlimits=(-1, 25), ylimits=(0, 1), xticks=(0, 24, 2), yticks=(0, 1, 1), key=None) for i in xrange(25): x = zeros(5)+i g.pyxplot((x, y), style="p", pt=i) # ``pt=i`` can be omitted # (then the next symbol is choosen # automatically) g.pyxsave(epsoutfile)
def makeMappingArray(N, data): """Create an N-element 1-d lookup table data represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between 0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all values of x must be in increasing order. Values between the given mapping points are determined by simple linear interpolation. The function returns an array "result" where result[x*(N-1)] gives the closest value for values of x between 0 and 1. """ try: adata = array(data) except: raise TypeError("data must be convertable to an array") shape = adata.shape if len(shape) != 2 and shape[1] != 3: raise ValueError("data must be nx3 format") x = adata[:,0] y0 = adata[:,1] y1 = adata[:,2] if x[0] != 0. or x[-1] != 1.0: raise ValueError( "data mapping points must start with x=0. and end with x=1") if sometrue(sort(x)-x): raise ValueError( "data mapping points must have x in increasing order") # begin generation of lookup table x = x * (N-1) lut = zeros((N,), Float) xind = arange(float(N)) ind = searchsorted(x, xind)[1:-1] lut[1:-1] = ( divide(xind[1:-1] - take(x,ind-1), take(x,ind)-take(x,ind-1) ) *(take(y0,ind)-take(y1,ind-1)) + take(y1,ind-1)) lut[0] = y1[0] lut[-1] = y0[-1] # ensure that the lut is confined to values between 0 and 1 by clipping it clip(lut, 0.0, 1.0) #lut = where(lut > 1., 1., lut) #lut = where(lut < 0., 0., lut) return lut
def specgram(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=128): """ Compute a spectrogram of data in x. Data are split into NFFT length segements and the PSD of each section is computed. The windowing function window is applied to each segment, and the amount of overlap of each segment is specified with noverlap See pdf for more info. The returned times are the midpoints of the intervals over which the ffts are calculated """ x = asarray(x) assert (NFFT > noverlap) if log(NFFT) / log(2) != int(log(NFFT) / log(2)): raise ValueError, 'NFFT must be a power of 2' # zero pad x up to NFFT if it is shorter than NFFT if len(x) < NFFT: n = len(x) x = resize(x, (NFFT, )) x[n:] = 0 # for real x, ignore the negative frequencies if typecode(x) == Complex: numFreqs = NFFT else: numFreqs = NFFT // 2 + 1 windowVals = window(ones((NFFT, ), typecode(x))) step = NFFT - noverlap ind = arange(0, len(x) - NFFT + 1, step) n = len(ind) Pxx = zeros((numFreqs, n), Float) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i] + NFFT] thisX = windowVals * detrend(thisX) fx = absolute(fft(thisX))**2 # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2 Pxx[:, i] = divide(fx[:numFreqs], norm(windowVals)**2) t = 1 / Fs * (ind + NFFT / 2) freqs = Fs / NFFT * arange(numFreqs) return Pxx, freqs, t
def makeMappingArray(N, data): """Create an N-element 1-d lookup table data represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between 0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all values of x must be in increasing order. Values between the given mapping points are determined by simple linear interpolation. The function returns an array "result" where result[x*(N-1)] gives the closest value for values of x between 0 and 1. """ try: adata = array(data) except: raise TypeError("data must be convertable to an array") shape = adata.shape if len(shape) != 2 and shape[1] != 3: raise ValueError("data must be nx3 format") x = adata[:,0] y0 = adata[:,1] y1 = adata[:,2] if x[0] != 0. or x[-1] != 1.0: raise ValueError( "data mapping points must start with x=0. and end with x=1") if sometrue(sort(x)-x): raise ValueError( "data mapping points must have x in increasing order") # begin generation of lookup table x = x * (N-1) lut = zeros((N,), Float) xind = arange(float(N)) ind = searchsorted(x, xind)[1:-1] lut[1:-1] = ( divide(xind[1:-1] - take(x,ind-1), take(x,ind)-take(x,ind-1) ) *(take(y0,ind)-take(y1,ind-1)) + take(y1,ind-1)) lut[0] = y1[0] lut[-1] = y0[-1] # ensure that the lut is confined to values between 0 and 1 by clipping it lut = where(lut > 1., 1., lut) lut = where(lut < 0., 0., lut) return lut
def specgram(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=128): """ Compute a spectrogram of data in x. Data are split into NFFT length segements and the PSD of each section is computed. The windowing function window is applied to each segment, and the amount of overlap of each segment is specified with noverlap See pdf for more info. The returned times are the midpoints of the intervals over which the ffts are calculated """ assert(NFFT>noverlap) if log(NFFT)/log(2) != int(log(NFFT)/log(2)): raise ValueError, 'NFFT must be a power of 2' # zero pad x up to NFFT if it is shorter than NFFT if len(x)<NFFT: n = len(x) x = resize(x, (NFFT,)) x[n:] = 0 # for real x, ignore the negative frequencies if x.typecode()==Complex: numFreqs = NFFT else: numFreqs = NFFT//2+1 windowVals = window(ones((NFFT,),x.typecode())) step = NFFT-noverlap ind = arange(0,len(x)-NFFT+1,step) n = len(ind) Pxx = zeros((numFreqs,n), Float) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i]+NFFT] thisX = windowVals*detrend(thisX) fx = absolute(fft(thisX))**2 # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2 Pxx[:,i] = divide(fx[:numFreqs], norm(windowVals)**2) t = 1/Fs*(ind+NFFT/2) freqs = Fs/NFFT*arange(numFreqs) return Pxx, freqs, t
def identity(n, rank=2, typecode='l'): """identity(n,r) returns the identity matrix of shape (n,n,...,n) (rank r). For ranks higher than 2, this object is simply a multi-index Kronecker delta: / 1 if i0=i1=...=iR, id[i0,i1,...,iR] = -| \ 0 otherwise. Optionally a typecode may be given (it defaults to 'l'). Since rank defaults to 2, this function behaves in the default case (when only n is given) like the Numeric identity function.""" iden = zeros((n, ) * rank, typecode=typecode) for i in range(n): idx = (i, ) * rank iden[idx] = 1 return iden
def identity(n,rank=2,typecode='l'): """identity(n,r) returns the identity matrix of shape (n,n,...,n) (rank r). For ranks higher than 2, this object is simply a multi-index Kronecker delta: / 1 if i0=i1=...=iR, id[i0,i1,...,iR] = -| \ 0 otherwise. Optionally a typecode may be given (it defaults to 'l'). Since rank defaults to 2, this function behaves in the default case (when only n is given) like the Numeric identity function.""" iden = zeros((n,)*rank,typecode=typecode) for i in range(n): idx = (i,)*rank iden[idx] = 1 return iden
def longest_contiguous_ones(x): """ return the indicies of the longest stretch of contiguous ones in x, assuming x is a vector of zeros and ones. """ if len(x)==0: return array([]) ind = find(x==0) if len(ind)==0: return arange(len(x)) if len(ind)==len(x): return array([]) y = zeros( (len(x)+2,), x.typecode()) y[1:-1] = x dif = diff(y) up = find(dif == 1); dn = find(dif == -1); ind = find( dn-up == max(dn - up)) ind = arange(take(up, ind), take(dn, ind)) return ind
def longest_contiguous_ones(x): """ return the indicies of the longest stretch of contiguous ones in x, assuming x is a vector of zeros and ones. """ if len(x) == 0: return array([]) ind = find(x == 0) if len(ind) == 0: return arange(len(x)) if len(ind) == len(x): return array([]) y = zeros((len(x) + 2, ), typecode(x)) y[1:-1] = x dif = diff(y) up = find(dif == 1) dn = find(dif == -1) ind = find(dn - up == max(dn - up)) ind = arange(take(up, ind), take(dn, ind)) return ind
def _initialize_reg_tri(self, z, badmask): ''' Initialize two arrays used by the low-level contour algorithm. This is temporary code; most of the reg initialization should be done in c. For each masked point, we need to mark as missing the four regions with that point as a corner. ''' imax, jmax = shape(z) nreg = jmax*(imax+1)+1 reg = ones((1, nreg), typecode = 'i') reg[0,:jmax+1]=0 reg[0,-jmax:]=0 for j in range(0, nreg, jmax): reg[0,j]=0 if badmask is not None: for i in range(imax): for j in range(jmax): if badmask[i,j]: ii = i*jmax+j if ii < nreg: reg[0,ii] = 0 ii += 1 if ii < nreg: reg[0,ii] = 0 ii += jmax if ii < nreg: reg[0,ii] = 0 ii -= 1 if ii < nreg: reg[0,ii] = 0 triangle = zeros((imax,jmax), typecode='s') return reg, triangle
def _initialize_reg_tri(self, z, badmask): ''' Initialize two arrays used by the low-level contour algorithm. This is temporary code; most of the reg initialization should be done in c. For each masked point, we need to mark as missing the four regions with that point as a corner. ''' imax, jmax = shape(z) nreg = jmax * (imax + 1) + 1 reg = ones((1, nreg), typecode='i') reg[0, :jmax + 1] = 0 reg[0, -jmax:] = 0 for j in range(0, nreg, jmax): reg[0, j] = 0 if badmask is not None: for i in range(imax): for j in range(jmax): if badmask[i, j]: ii = i * jmax + j if ii < nreg: reg[0, ii] = 0 ii += 1 if ii < nreg: reg[0, ii] = 0 ii += jmax if ii < nreg: reg[0, ii] = 0 ii -= 1 if ii < nreg: reg[0, ii] = 0 triangle = zeros((imax, jmax), typecode='s') return reg, triangle
def contourf(self, *args, **kwargs): """ contourf(self, *args, **kwargs) Function signatures contourf(Z) - make a filled contour plot of an array Z. The level values are chosen automatically. contourf(X,Y,Z) - X,Y specify the (x,y) coordinates of the surface contourf(Z,N) and contourf(X,Y,Z,N) - make a filled contour plot corresponding to N contour levels contourf(Z,V) and contourf(X,Y,Z,V) - fill len(V) regions, between the levels specified in sequence V, and a final region for values of Z greater than the last element in V contourf(Z, **kwargs) - Use keyword args to control colors, origin, cmap ... see below [L,C] = contourf(...) returns a list of levels and a silent_list of PolyCollections Optional keywork args are shown with their defaults below (you must use kwargs for these): * colors = None: one of these: - a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified - one string color, e.g. colors = 'r' or colors = 'red', all levels will be plotted in this color - if colors == None, the default colormap will be used * alpha=1.0 : the alpha blending value * cmap = None: a cm Colormap instance from matplotlib.cm. * origin = None: 'upper'|'lower'|'image'|None. If 'image', the rc value for image.origin will be used. If None (default), the first value of Z will correspond to the lower left corner, location (0,0). This keyword is active only if contourf is called with one or two arguments, that is, without explicitly specifying X and Y. * badmask = None: array with dimensions of Z, and with values of zero at locations corresponding to valid data, and one at locations where the value of Z should be ignored. This is experimental. It presently works for edge regions for line and filled contours, but for interior regions it works correctly only for line contours. The badmask kwarg may go away in the future, to be replaced by the use of NaN value in Z and/or the use of a masked array in Z. reg is a 1D region number array with of imax*(jmax+1)+1 size The values of reg should be positive region numbers, and zero fro zones wich do not exist. triangle - triangulation array - must be the same shape as reg contourf differs from the Matlab (TM) version in that it does not draw the polygon edges (because the contouring engine yields simply connected regions with branch cuts.) To draw the edges, add line contours with calls to contour. """ alpha = kwargs.get('alpha', 1.0) origin = kwargs.get('origin', None) extent = kwargs.get('extent', None) cmap = kwargs.get('cmap', None) colors = kwargs.get('colors', None) badmask = kwargs.get('badmask', None) if cmap is not None: assert (isinstance(cmap, Colormap)) if origin is not None: assert (origin in ['lower', 'upper', 'image']) if colors is not None and cmap is not None: raise RuntimeError('Either colors or cmap must be None') if origin == 'image': origin = rcParams['image.origin'] x, y, z, lev = self._contour_args(True, badmask, origin, extent, *args) # Manipulate the plot *after* checking the input arguments. if not self.ax.ishold(): self.ax.cla() Nlev = len(lev) reg, triangle = self._initialize_reg_tri(z, badmask) tcolors, mappable, collections = self._process_colors( z, colors, alpha, lev, cmap) region = 0 lev_upper = list(lev[1:]) lev_upper.append(1e38) for level, level_upper, color in zip(lev, lev_upper, tcolors): levs = (level, level_upper) ntotal, nparts = _contour.GcInit2(x, y, reg, triangle, region, z, levs, 30) np = zeros((nparts, ), typecode='l') xp = zeros((ntotal, ), Float64) yp = zeros((ntotal, ), Float64) nlist = _contour.GcTrace(np, xp, yp) col = PolyCollection(nlist, linewidths=(1, )) # linewidths = 1 is necessary to avoid artifacts # in rendering the region boundaries. col.set_color(color) # sets both facecolor and edgecolor self.ax.add_collection(col) collections.append(col) collections = silent_list('PolyCollection', collections) collections.mappable = mappable return lev, collections
def contour(self, *args, **kwargs): """ contour(self, *args, **kwargs) Function signatures contour(Z) - make a contour plot of an array Z. The level values are chosen automatically. contour(X,Y,Z) - X,Y specify the (x,y) coordinates of the surface contour(Z,N) and contour(X,Y,Z,N) - draw N contour lines overriding the automatic value contour(Z,V) and contour(X,Y,Z,V) - draw len(V) contour lines, at the values specified in V (array, list, tuple) contour(Z, **kwargs) - Use keyword args to control colors, linewidth, origin, cmap ... see below [L,C] = contour(...) returns a list of levels and a silent_list of LineCollections Optional keywork args are shown with their defaults below (you must use kwargs for these): * colors = None: one of these: - a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified - one string color, e.g. colors = 'r' or colors = 'red', all levels will be plotted in this color - if colors == None, the default colormap will be used * alpha=1.0 : the alpha blending value * cmap = None: a cm Colormap instance from matplotlib.cm. * origin = None: 'upper'|'lower'|'image'|None. If 'image', the rc value for image.origin will be used. If None (default), the first value of Z will correspond to the lower left corner, location (0,0). This keyword is active only if contourf is called with one or two arguments, that is, without explicitly specifying X and Y. * extent = None: (x0,x1,y0,y1); also active only if X and Y are not specified. * badmask = None: array with dimensions of Z, and with values of zero at locations corresponding to valid data, and one at locations where the value of Z should be ignored. This is experimental. It presently works for edge regions for line and filled contours, but for interior regions it works correctly only for line contours. The badmask kwarg may go away in the future, to be replaced by the use of NaN value in Z and/or the use of a masked array in Z. * linewidths = None: or one of these: - a number - all levels will be plotted with this linewidth, e.g. linewidths = 0.6 - a tuple of numbers, e.g. linewidths = (0.4, 0.8, 1.2) different levels will be plotted with different linewidths in the order specified - if linewidths == None, the default width in lines.linewidth in .matplotlibrc is used * fmt = '1.3f': a format string for adding a label to each collection. Useful for auto-legending. """ alpha = kwargs.get('alpha', 1.0) linewidths = kwargs.get('linewidths', None) fmt = kwargs.get('fmt', '%1.3f') origin = kwargs.get('origin', None) extent = kwargs.get('extent', None) cmap = kwargs.get('cmap', None) colors = kwargs.get('colors', None) badmask = kwargs.get('badmask', None) if cmap is not None: assert (isinstance(cmap, Colormap)) if origin is not None: assert (origin in ['lower', 'upper', 'image']) if extent is not None: assert (len(extent) == 4) if colors is not None and cmap is not None: raise RuntimeError('Either colors or cmap must be None') # todo: shouldn't this use the current image rather than the rc param? if origin == 'image': origin = rcParams['image.origin'] x, y, z, lev = self._contour_args(False, badmask, origin, extent, *args) # Manipulate the plot *after* checking the input arguments. if not self.ax.ishold(): self.ax.cla() Nlev = len(lev) if cmap is None: if colors is None: Ncolors = Nlev else: Ncolors = len(colors) else: Ncolors = Nlev reg, triangle = self._initialize_reg_tri(z, badmask) tcolors, mappable, collections = self._process_colors( z, colors, alpha, lev, cmap) if linewidths == None: tlinewidths = [rcParams['lines.linewidth']] * Nlev else: if iterable(linewidths) and len(linewidths) < Nlev: linewidths = list(linewidths) * int( ceil(Nlev / len(linewidths))) elif not iterable(linewidths) and type(linewidths) in [int, float]: linewidths = [linewidths] * Nlev tlinewidths = [(w, ) for w in linewidths] region = 0 for level, color, width in zip(lev, tcolors, tlinewidths): ntotal, nparts = _contour.GcInit1(x, y, reg, triangle, region, z, level) np = zeros((nparts, ), typecode='l') xp = zeros((ntotal, ), Float64) yp = zeros((ntotal, ), Float64) nlist = _contour.GcTrace(np, xp, yp) col = LineCollection(nlist) col.set_color(color) col.set_linewidth(width) if level < 0.0 and Ncolors == 1: col.set_linestyle((0, (6., 6.)), ) #print "setting dashed" col.set_label(fmt % level) self.ax.add_collection(col) collections.append(col) collections = silent_list('LineCollection', collections) # the mappable attr is for the pylab interface functions, # which maintain the current image collections.mappable = mappable return lev, collections
def zero(data, *args): if isinstance(data, numerix.ndarray): return numerix.zeros(data.shape, data.dtype) return numerix.zeros(len(data))
def zeros_like(a): """Return an array of zeros of the shape and typecode of a.""" return zeros(a.shape, typecode(a))
def contour(self, *args, **kwargs): """ contour(self, *args, **kwargs) Function signatures contour(Z) - make a contour plot of an array Z. The level values are chosen automatically. contour(X,Y,Z) - X,Y specify the (x,y) coordinates of the surface contour(Z,N) and contour(X,Y,Z,N) - draw N contour lines overriding the automatic value contour(Z,V) and contour(X,Y,Z,V) - draw len(V) contour lines, at the values specified in V (array, list, tuple) contour(Z, **kwargs) - Use keyword args to control colors, linewidth, origin, cmap ... see below [L,C] = contour(...) returns a list of levels and a silent_list of LineCollections Optional keywork args are shown with their defaults below (you must use kwargs for these): * colors = None: one of these: - a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified - one string color, e.g. colors = 'r' or colors = 'red', all levels will be plotted in this color - if colors == None, the default colormap will be used * alpha=1.0 : the alpha blending value * cmap = None: a cm Colormap instance from matplotlib.cm. * origin = None: 'upper'|'lower'|'image'|None. If 'image', the rc value for image.origin will be used. If None (default), the first value of Z will correspond to the lower left corner, location (0,0). This keyword is active only if contourf is called with one or two arguments, that is, without explicitly specifying X and Y. * extent = None: (x0,x1,y0,y1); also active only if X and Y are not specified. * badmask = None: array with dimensions of Z, and with values of zero at locations corresponding to valid data, and one at locations where the value of Z should be ignored. This is experimental. It presently works for edge regions for line and filled contours, but for interior regions it works correctly only for line contours. The badmask kwarg may go away in the future, to be replaced by the use of NaN value in Z and/or the use of a masked array in Z. * linewidths = None: or one of these: - a number - all levels will be plotted with this linewidth, e.g. linewidths = 0.6 - a tuple of numbers, e.g. linewidths = (0.4, 0.8, 1.2) different levels will be plotted with different linewidths in the order specified - if linewidths == None, the default width in lines.linewidth in .matplotlibrc is used * fmt = '1.3f': a format string for adding a label to each collection. Useful for auto-legending. """ alpha = kwargs.get('alpha', 1.0) linewidths = kwargs.get('linewidths', None) fmt = kwargs.get('fmt', '%1.3f') origin = kwargs.get('origin', None) extent = kwargs.get('extent', None) cmap = kwargs.get('cmap', None) colors = kwargs.get('colors', None) badmask = kwargs.get('badmask', None) if cmap is not None: assert(isinstance(cmap, Colormap)) if origin is not None: assert(origin in ['lower', 'upper', 'image']) if extent is not None: assert(len(extent) == 4) if colors is not None and cmap is not None: raise RuntimeError('Either colors or cmap must be None') # todo: shouldn't this use the current image rather than the rc param? if origin == 'image': origin = rcParams['image.origin'] x, y, z, lev = self._contour_args(False, badmask, origin, extent, *args) # Manipulate the plot *after* checking the input arguments. if not self.ax.ishold(): self.ax.cla() Nlev = len(lev) if cmap is None: if colors is None: Ncolors = Nlev else: Ncolors = len(colors) else: Ncolors = Nlev reg, triangle = self._initialize_reg_tri(z, badmask) tcolors, mappable, collections = self._process_colors( z, colors, alpha, lev, cmap) if linewidths == None: tlinewidths = [rcParams['lines.linewidth']] *Nlev else: if iterable(linewidths) and len(linewidths) < Nlev: linewidths = list(linewidths) * int(ceil(Nlev/len(linewidths))) elif not iterable(linewidths) and type(linewidths) in [int, float]: linewidths = [linewidths] * Nlev tlinewidths = [(w,) for w in linewidths] region = 0 for level, color, width in zip(lev, tcolors, tlinewidths): ntotal, nparts = _contour.GcInit1(x, y, reg, triangle, region, z, level) np = zeros((nparts,), typecode='l') xp = zeros((ntotal, ), Float64) yp = zeros((ntotal,), Float64) nlist = _contour.GcTrace(np, xp, yp) col = LineCollection(nlist) col.set_color(color) col.set_linewidth(width) if level < 0.0 and Ncolors == 1: col.set_linestyle((0, (6.,6.)),) #print "setting dashed" col.set_label(fmt%level) self.ax.add_collection(col) collections.append(col) collections = silent_list('LineCollection', collections) # the mappable attr is for the pylab interface functions, # which maintain the current image collections.mappable = mappable return lev, collections
def contourf(self, *args, **kwargs): """ contourf(self, *args, **kwargs) Function signatures contourf(Z) - make a filled contour plot of an array Z. The level values are chosen automatically. contourf(X,Y,Z) - X,Y specify the (x,y) coordinates of the surface contourf(Z,N) and contourf(X,Y,Z,N) - make a filled contour plot corresponding to N contour levels contourf(Z,V) and contourf(X,Y,Z,V) - fill len(V) regions, between the levels specified in sequence V, and a final region for values of Z greater than the last element in V contourf(Z, **kwargs) - Use keyword args to control colors, origin, cmap ... see below [L,C] = contourf(...) returns a list of levels and a silent_list of PolyCollections Optional keywork args are shown with their defaults below (you must use kwargs for these): * colors = None: one of these: - a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified - one string color, e.g. colors = 'r' or colors = 'red', all levels will be plotted in this color - if colors == None, the default colormap will be used * alpha=1.0 : the alpha blending value * cmap = None: a cm Colormap instance from matplotlib.cm. * origin = None: 'upper'|'lower'|'image'|None. If 'image', the rc value for image.origin will be used. If None (default), the first value of Z will correspond to the lower left corner, location (0,0). This keyword is active only if contourf is called with one or two arguments, that is, without explicitly specifying X and Y. * badmask = None: array with dimensions of Z, and with values of zero at locations corresponding to valid data, and one at locations where the value of Z should be ignored. This is experimental. It presently works for edge regions for line and filled contours, but for interior regions it works correctly only for line contours. The badmask kwarg may go away in the future, to be replaced by the use of NaN value in Z and/or the use of a masked array in Z. reg is a 1D region number array with of imax*(jmax+1)+1 size The values of reg should be positive region numbers, and zero fro zones wich do not exist. triangle - triangulation array - must be the same shape as reg contourf differs from the Matlab (TM) version in that it does not draw the polygon edges (because the contouring engine yields simply connected regions with branch cuts.) To draw the edges, add line contours with calls to contour. """ alpha = kwargs.get('alpha', 1.0) origin = kwargs.get('origin', None) extent = kwargs.get('extent', None) cmap = kwargs.get('cmap', None) colors = kwargs.get('colors', None) badmask = kwargs.get('badmask', None) if cmap is not None: assert(isinstance(cmap, Colormap)) if origin is not None: assert(origin in ['lower', 'upper', 'image']) if colors is not None and cmap is not None: raise RuntimeError('Either colors or cmap must be None') if origin == 'image': origin = rcParams['image.origin'] x, y, z, lev = self._contour_args(True, badmask, origin, extent, *args) # Manipulate the plot *after* checking the input arguments. if not self.ax.ishold(): self.ax.cla() Nlev = len(lev) reg, triangle = self._initialize_reg_tri(z, badmask) tcolors, mappable, collections = self._process_colors(z, colors, alpha, lev, cmap) region = 0 lev_upper = list(lev[1:]) lev_upper.append(1e38) for level, level_upper, color in zip(lev, lev_upper, tcolors): levs = (level, level_upper) ntotal, nparts = _contour.GcInit2(x, y, reg, triangle, region, z, levs, 30) np = zeros((nparts,), typecode='l') xp = zeros((ntotal, ), Float64) yp = zeros((ntotal,), Float64) nlist = _contour.GcTrace(np, xp, yp) col = PolyCollection(nlist, linewidths=(1,)) # linewidths = 1 is necessary to avoid artifacts # in rendering the region boundaries. col.set_color(color) # sets both facecolor and edgecolor self.ax.add_collection(col) collections.append(col) collections = silent_list('PolyCollection', collections) collections.mappable = mappable return lev, collections
def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, preferSpeedOverMemory=True, progressCallback=donothing_callback, returnPxx=False): """ Cxy, Phase, freqs = cohere_pairs( X, ij, ...) Compute the coherence for all pairs in ij. X is a numSamples,numCols Numeric array. ij is a list of tuples (i,j). Each tuple is a pair of indexes into the columns of X for which you want to compute coherence. For example, if X has 64 columns, and you want to compute all nonredundant pairs, define ij as ij = [] for i in range(64): for j in range(i+1,64): ij.append( (i,j) ) The other function arguments, except for 'preferSpeedOverMemory' (see below), are explained in the help string of 'psd'. Return value is a tuple (Cxy, Phase, freqs). Cxy -- a dictionary of (i,j) tuples -> coherence vector for that pair. Ie, Cxy[(i,j) = cohere(X[:,i], X[:,j]). Number of dictionary keys is len(ij) Phase -- a dictionary of phases of the cross spectral density at each frequency for each pair. keys are (i,j). freqs -- a vector of frequencies, equal in length to either the coherence or phase vectors for any i,j key. Eg, to make a coherence Bode plot: subplot(211) plot( freqs, Cxy[(12,19)]) subplot(212) plot( freqs, Phase[(12,19)]) For a large number of pairs, cohere_pairs can be much more efficient than just calling cohere for each pair, because it caches most of the intensive computations. If N is the number of pairs, this function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N^2). However, because of the caching, it is also more memory intensive, making 2 additional complex arrays with approximately the same number of elements as X. The parameter 'preferSpeedOverMemory', if false, limits the caching by only making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even when preferSpeedOverMemory is false, cohere_pairs will still give significant performace gains over calling cohere for each pair, and will use subtantially less memory than if preferSpeedOverMemory is true. In my tests with a 43000,64 array over all nonredundant pairs, preferSpeedOverMemory=1 delivered a 33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared with preferSpeedOverMemory=0. But both solutions were more than 10x faster than naievly crunching all possible pairs through cohere. See test/cohere_pairs_test.py in the src tree for an example script that shows that this cohere_pairs and cohere give the same results for a given pair. """ numRows, numCols = X.shape # zero pad if X is too short if numRows < NFFT: tmp = X X = zeros( (NFFT, numCols), X.typecode()) X[:numRows,:] = tmp del tmp numRows, numCols = X.shape # get all the columns of X that we are interested in by checking # the ij tuples seen = {} for i,j in ij: seen[i]=1; seen[j] = 1 allColumns = seen.keys() Ncols = len(allColumns) del seen # for real X, ignore the negative frequencies if X.typecode()==Complex: numFreqs = NFFT else: numFreqs = NFFT//2+1 # cache the FFT of every windowed, detrended NFFT length segement # of every channel. If preferSpeedOverMemory, cache the conjugate # as well windowVals = window(ones((NFFT,), X.typecode())) ind = range(0, numRows-NFFT+1, NFFT-noverlap) numSlices = len(ind) FFTSlices = {} FFTConjSlices = {} Pxx = {} slices = range(numSlices) normVal = norm(windowVals)**2 for iCol in allColumns: progressCallback(i/Ncols, 'Cacheing FFTs') Slices = zeros( (numSlices,numFreqs), Complex) for iSlice in slices: thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol] thisSlice = windowVals*detrend(thisSlice) Slices[iSlice,:] = fft(thisSlice)[:numFreqs] FFTSlices[iCol] = Slices if preferSpeedOverMemory: FFTConjSlices[iCol] = conjugate(Slices) Pxx[iCol] = divide(mean(absolute(Slices)**2), normVal) del Slices, ind, windowVals # compute the coherences and phases for all pairs using the # cached FFTs Cxy = {} Phase = {} count = 0 N = len(ij) for i,j in ij: count +=1 if count%10==0: progressCallback(count/N, 'Computing coherences') if preferSpeedOverMemory: Pxy = FFTSlices[i] * FFTConjSlices[j] else: Pxy = FFTSlices[i] * conjugate(FFTSlices[j]) if numSlices>1: Pxy = mean(Pxy) Pxy = divide(Pxy, normVal) Cxy[(i,j)] = divide(absolute(Pxy)**2, Pxx[i]*Pxx[j]) Phase[(i,j)] = arctan2(Pxy.imag, Pxy.real) freqs = Fs/NFFT*arange(numFreqs) if returnPxx: return Cxy, Phase, freqs, Pxx else: return Cxy, Phase, freqs
def csd(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0): """ The cross spectral density Pxy by Welches average periodogram method. The vectors x and y are divided into NFFT length segments. Each segment is detrended by function detrend and windowed by function window. noverlap gives the length of the overlap between segments. The product of the direct FFTs of x and y are averaged over each segment to compute Pxy, with a scaling to correct for power loss due to windowing. Fs is the sampling frequency. NFFT must be a power of 2 Returns the tuple Pxy, freqs Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ if NFFT % 2: raise ValueError, 'NFFT must be a power of 2' # zero pad x and y up to NFFT if they are shorter than NFFT if len(x)<NFFT: n = len(x) x = resize(x, (NFFT,)) x[n:] = 0 if len(y)<NFFT: n = len(y) y = resize(y, (NFFT,)) y[n:] = 0 # for real x, ignore the negative frequencies if x.typecode()==Complex: numFreqs = NFFT else: numFreqs = NFFT//2+1 windowVals = window(ones((NFFT,),x.typecode())) step = NFFT-noverlap ind = range(0,len(x)-NFFT+1,step) n = len(ind) Pxy = zeros((numFreqs,n), Complex) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i]+NFFT] thisX = windowVals*detrend(thisX) thisY = y[ind[i]:ind[i]+NFFT] thisY = windowVals*detrend(thisY) fx = fft(thisX) fy = fft(thisY) Pxy[:,i] = conjugate(fx[:numFreqs])*fy[:numFreqs] # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2 if n>1: Pxy = mean(Pxy,1) Pxy = divide(Pxy, norm(windowVals)**2) freqs = Fs/NFFT*arange(numFreqs) Pxy.shape = len(freqs), return Pxy, freqs
def cohere_pairs(X, ij, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, preferSpeedOverMemory=True, progressCallback=donothing_callback, returnPxx=False): """ Cxy, Phase, freqs = cohere_pairs( X, ij, ...) Compute the coherence for all pairs in ij. X is a numSamples,numCols Numeric array. ij is a list of tuples (i,j). Each tuple is a pair of indexes into the columns of X for which you want to compute coherence. For example, if X has 64 columns, and you want to compute all nonredundant pairs, define ij as ij = [] for i in range(64): for j in range(i+1,64): ij.append( (i,j) ) The other function arguments, except for 'preferSpeedOverMemory' (see below), are explained in the help string of 'psd'. Return value is a tuple (Cxy, Phase, freqs). Cxy -- a dictionary of (i,j) tuples -> coherence vector for that pair. Ie, Cxy[(i,j) = cohere(X[:,i], X[:,j]). Number of dictionary keys is len(ij) Phase -- a dictionary of phases of the cross spectral density at each frequency for each pair. keys are (i,j). freqs -- a vector of frequencies, equal in length to either the coherence or phase vectors for any i,j key. Eg, to make a coherence Bode plot: subplot(211) plot( freqs, Cxy[(12,19)]) subplot(212) plot( freqs, Phase[(12,19)]) For a large number of pairs, cohere_pairs can be much more efficient than just calling cohere for each pair, because it caches most of the intensive computations. If N is the number of pairs, this function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N^2). However, because of the caching, it is also more memory intensive, making 2 additional complex arrays with approximately the same number of elements as X. The parameter 'preferSpeedOverMemory', if false, limits the caching by only making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even when preferSpeedOverMemory is false, cohere_pairs will still give significant performace gains over calling cohere for each pair, and will use subtantially less memory than if preferSpeedOverMemory is true. In my tests with a 43000,64 array over all nonredundant pairs, preferSpeedOverMemory=1 delivered a 33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared with preferSpeedOverMemory=0. But both solutions were more than 10x faster than naievly crunching all possible pairs through cohere. See test/cohere_pairs_test.py in the src tree for an example script that shows that this cohere_pairs and cohere give the same results for a given pair. """ numRows, numCols = X.shape # zero pad if X is too short if numRows < NFFT: tmp = X X = zeros((NFFT, numCols), typecode(X)) X[:numRows, :] = tmp del tmp numRows, numCols = X.shape # get all the columns of X that we are interested in by checking # the ij tuples seen = {} for i, j in ij: seen[i] = 1 seen[j] = 1 allColumns = seen.keys() Ncols = len(allColumns) del seen # for real X, ignore the negative frequencies if typecode(X) == Complex: numFreqs = NFFT else: numFreqs = NFFT // 2 + 1 # cache the FFT of every windowed, detrended NFFT length segement # of every channel. If preferSpeedOverMemory, cache the conjugate # as well windowVals = window(ones((NFFT, ), typecode(X))) ind = range(0, numRows - NFFT + 1, NFFT - noverlap) numSlices = len(ind) FFTSlices = {} FFTConjSlices = {} Pxx = {} slices = range(numSlices) normVal = norm(windowVals)**2 for iCol in allColumns: progressCallback(i / Ncols, 'Cacheing FFTs') Slices = zeros((numSlices, numFreqs), Complex) for iSlice in slices: thisSlice = X[ind[iSlice]:ind[iSlice] + NFFT, iCol] thisSlice = windowVals * detrend(thisSlice) Slices[iSlice, :] = fft(thisSlice)[:numFreqs] FFTSlices[iCol] = Slices if preferSpeedOverMemory: FFTConjSlices[iCol] = conjugate(Slices) Pxx[iCol] = divide(mean(absolute(Slices)**2), normVal) del Slices, ind, windowVals # compute the coherences and phases for all pairs using the # cached FFTs Cxy = {} Phase = {} count = 0 N = len(ij) for i, j in ij: count += 1 if count % 10 == 0: progressCallback(count / N, 'Computing coherences') if preferSpeedOverMemory: Pxy = FFTSlices[i] * FFTConjSlices[j] else: Pxy = FFTSlices[i] * conjugate(FFTSlices[j]) if numSlices > 1: Pxy = mean(Pxy) Pxy = divide(Pxy, normVal) Cxy[(i, j)] = divide(absolute(Pxy)**2, Pxx[i] * Pxx[j]) Phase[(i, j)] = arctan2(Pxy.imag, Pxy.real) freqs = Fs / NFFT * arange(numFreqs) if returnPxx: return Cxy, Phase, freqs, Pxx else: return Cxy, Phase, freqs
def csd(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0): """ The cross spectral density Pxy by Welches average periodogram method. The vectors x and y are divided into NFFT length segments. Each segment is detrended by function detrend and windowed by function window. noverlap gives the length of the overlap between segments. The product of the direct FFTs of x and y are averaged over each segment to compute Pxy, with a scaling to correct for power loss due to windowing. Fs is the sampling frequency. NFFT must be a power of 2 Returns the tuple Pxy, freqs Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ if NFFT % 2: raise ValueError, 'NFFT must be a power of 2' # zero pad x and y up to NFFT if they are shorter than NFFT if len(x) < NFFT: n = len(x) x = resize(x, (NFFT, )) x[n:] = 0 if len(y) < NFFT: n = len(y) y = resize(y, (NFFT, )) y[n:] = 0 # for real x, ignore the negative frequencies if typecode(x) == Complex: numFreqs = NFFT else: numFreqs = NFFT // 2 + 1 windowVals = window(ones((NFFT, ), typecode(x))) step = NFFT - noverlap ind = range(0, len(x) - NFFT + 1, step) n = len(ind) Pxy = zeros((numFreqs, n), Complex) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i] + NFFT] thisX = windowVals * detrend(thisX) thisY = y[ind[i]:ind[i] + NFFT] thisY = windowVals * detrend(thisY) fx = fft(thisX) fy = fft(thisY) Pxy[:, i] = conjugate(fx[:numFreqs]) * fy[:numFreqs] # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2 if n > 1: Pxy = mean(Pxy, 1) Pxy = divide(Pxy, norm(windowVals)**2) freqs = Fs / NFFT * arange(numFreqs) Pxy.shape = len(freqs), return Pxy, freqs
def zeros_like(a): """Return an array of zeros of the shape and typecode of a.""" return zeros(a.shape,a.typecode())