Ejemplo n.º 1
0
    def __new__(subtype, *args, **kwargs):
        '''
        Create new object.

        No default mapping - use empty dictionary.
        '''
        values_mapping = kwargs.pop('values_mapping', {})
        obj = MaskedArray.__new__(MaskedArray, *args, **kwargs)
        obj.__class__ = MappedArray

        # Must occur after class change for obj.state to update!
        obj.values_mapping = values_mapping

        return obj
    def __new__(cls, *args, **kwargs):
        '''
        Create new object.

        No default mapping - use empty dictionary.
        '''
        values_mapping = kwargs.pop('values_mapping', {})
        obj = MaskedArray.__new__(MaskedArray, *args, **kwargs)
        obj.__class__ = MappedArray

        # Must occur after class change for obj.state to update!
        obj.values_mapping = values_mapping

        return obj
Ejemplo n.º 3
0
    def __new__(
            cls,
            data,
            yorigin,
            xorigin,
            origin,
            cellsize,
            proj=None,
            fill_value=None,
            fobj=None,
            mode=None,  # mask=None,
            *args,
            **kwargs):
        # The mask will always be calculated, even if its already present or not needed at all...
        mask = np.zeros_like(
            data, np.bool) if fill_value is None else data == fill_value

        if origin not in ORIGINS:
            raise TypeError(
                "Argument 'origin' must be one of '{:}'".format(ORIGINS))
        try:
            # Does this work for grids crossing the equator??
            origin = "".join(("l" if cellsize[0] > 0 else "u",
                              "l" if cellsize[1] > 0 else "r"))
        # iterable of len < 2, numeric value
        except (IndexError, TypeError):
            cs = abs(cellsize)
            cellsize = (cs if origin[0] == "l" else -cs,
                        cs if origin[1] == "l" else -cs)

        obj = MaskedArray.__new__(cls,
                                  data=data,
                                  fill_value=fill_value,
                                  mask=mask,
                                  *args,
                                  **kwargs)
        obj.unshare_mask()

        obj._optinfo["yorigin"] = yorigin
        obj._optinfo["xorigin"] = xorigin
        obj._optinfo["origin"] = origin
        obj._optinfo["cellsize"] = tuple(cellsize)
        obj._optinfo["_proj"] = _Projection(proj)
        obj._optinfo[
            "fill_value"] = fill_value  #if fill_value is not None else _dtypeInfo(obj.dtype)["min"]
        obj._optinfo["mode"] = mode
        obj._optinfo["_fobj"] = fobj

        return obj
Ejemplo n.º 4
0
    def __new__(cls, data, err=noerr, name='', units='', mask=nomask, dtype=None, edtype=None):
        """
        Construct a Dvect from an input array which we try to make into a masked array as far as possible
        """

        # Try to make a masked array out of the input
        #obj = masked_array(data, dtype=dtype, mask=mask, subok=True).view(cls)
        obj = MaskedArray.__new__(cls, data, dtype=dtype, mask=mask)
        if not isinstance(obj, Dvect):
            obj = obj.view(cls)

        # Add attributes
        if err is not noerr:
            obj._err = array(err, dtype=edtype)
            if obj._err.shape != obj.shape:
                raise DvectError('Dvect.__new__: errors and data are incompatible')
        obj._name  = name
        obj._units = units

        return obj
Ejemplo n.º 5
0
    def __new__(
            cls,
            data,
            geotrans=None,
            proj=None,
            fill_value=None,
            fobj=None,
            color_mode=None,  # mask=None,
            yvalues=None,
            xvalues=None,
            mode="r",
            *args,
            **kwargs):

        # NOTE: The mask will always be calculated, even if its
        #       already present or not needed at all...
        mask = (np.zeros_like(data, np.bool)
                if fill_value is None else data == fill_value)

        self = MaskedArray.__new__(cls,
                                   data=data,
                                   fill_value=fill_value,
                                   mask=mask,
                                   *args,
                                   **kwargs)
        self.unshare_mask()

        self.__dict__["geotrans"] = geotrans
        self.__dict__["proj"] = _Projection(proj)

        self.__dict__["color_mode"] = color_mode
        self.__dict__["mode"] = mode

        self.__dict__["_fobj"] = fobj
        self.__dict__["_yvalues"] = yvalues
        self.__dict__["_xvalues"] = xvalues

        return self