def main(): # we destroy the stack like men https://stackoverflow.com/a/16248113 # resource.setrlimit(resource.RLIMIT_STACK, (2**29,-1)) # sys.setrecursionlimit(10**6) args = parse_arguments() print(args) # setup width and heigth rows, columns = popen('stty size', 'r').read().split() # mywidth, myheigth = 27,9 if args['columns'] == -1: columns = int(columns) else: columns = args['columns'] if args['rows'] == -1: rows = int(rows) else: rows = args['rows'] # setup seed value if args['seed'] == -1: myseed = 1 myseed = int(timer() * 1e9 % 2**32) else: myseed = args['seed'] seed(myseed) npseed(myseed) print(f'python3 sim_waves_main.py -s {myseed} -r {rows} -c {columns}') # run_test_lcs_base(rows=rows, columns=columns) # run_test_lcs_base(rows=4000, columns=4000) run_test_lcs_base(rows=20, columns=100)
def main(): args = parse_arguments() print(args) # setup width and heigth rows, columns = popen('stty size', 'r').read().split() # mywidth, myheigth = 27,9 if args.columns == -1: columns = int(columns) else: columns = args.columns if args.rows == -1: rows = int(rows) else: rows = args.rows if args.num_iter == -1: num_iter = 3 else: num_iter = args.num_iter # setup seed value if args.seed == -1: myseed = 1 myseed = int(timer() * 1e9 % 2**32) else: myseed = args.seed seed(myseed) npseed(myseed) print( f'python3 sim_waves_main.py -s {myseed} -r {rows} -c {columns} -i {num_iter}' ) # test_waves_base(rows=rows, columns=columns, num_iter=num_iter) # test_waves_big(rows=rows, columns=columns, num_iter=num_iter) # test_waves_mini(num_iter) test_waves_mini_moving(num_iter)
def set_seed(myseed): """Globally set seed.""" from random import seed from numpy.random import seed as npseed from tensorflow import set_random_seed as tfseed seed(myseed) npseed(int(myseed)) tfseed(int(myseed)) os.environ['PYTHONHASHSEED'] = str(myseed)
def simulation_parameters(total, s): seed(s) npseed(s) r_p = {i: poisson(15) for i in range(total)} # El tiempo de recuperacion c_p = {i: min(r_p[i], negative_binomial(6, 0.5)) for i in range(total)} # Tiempo en que se da cuenta contagios = {i: random() for i in range(total) } # Esto es basicamente para la bernoulli return r_p, c_p, contagios
def __init__(self, parameters: dict = {}): """ TBA """ self._parameters = copy.deepcopy(self.DEFAULT_PARAMETERS) self._parameters.update(parameters) self._random = Random(x=self._parameters['seed']) if isinstance(self._parameters['seed'], numbers.Number): npseed(self._parameters['seed']) map = Map(self._parameters['map'], self._parameters['P_task_appears']) # use "set" to get rid of weird wrappers # if set(self._parameters['P_action_succeed'].keys()) != set(FactoryFloor.ACTIONS.values()): # raise ValueError("P_action_succeed must contain values for all actions") robots = [] tasks = [] self._state = FactoryFloorState(robots, tasks, map) # TODO: remove code duplication for item in self._parameters['robots']: pos = item['pos'] robotId = item['id'] if isinstance(pos, list): if len(pos) != 2: raise ValueError( "position vector must be length 2 but got " + str(pos)) robot = FactoryFloorRobot(robotId, array(pos)) elif pos == 'random': robot = FactoryFloorRobot(robotId, self._getFreeMapPosition()) else: raise ValueError( "Unknown robot position, expected list but got " + str(type(pos))) self._state.addRobot(robot) for pos in self._parameters['tasks']: if isinstance(pos, list): if len(pos) != 2: raise ValueError( "position vector must be length 2 but got " + str(pos)) task = FactoryFloorTask(array(pos)) elif pos == 'random': task = FactoryFloorTask(self._getFreeMapPosition()) else: raise ValueError( "Unknown task position, expected list but got " + str(type(pos))) self._state.addTask(task) if not USE_PossibleActionsSpace: self._actSpace = spaces.Dict({ robot.getId(): spaces.Discrete(len(self.ACTIONS)) for robot in self._state.robots }) seed = self._random.randint(0, 10 * len(self._state.robots)) self._actSpace.seed(seed)
def simulation_parameters(total, delta_t, s): seed(s) npseed(s) r_p = {i: poisson(15) for i in range(total)} # El tiempo de recuperacion c_p = {i: min(r_p[i], negative_binomial(6, 0.5)) for i in range(total)} # Tiempo en que se da cuenta contagios = { t: {i: random() for i in range(total)} for t in range(delta_t + 1) } return r_p, c_p, contagios
def __init__(self, password): password += "yozh" if len(password.encode('utf-8')) - 4 < 8: for i in range(1, 8 - len(password) + 4 + 1): password += str(i) passbits = bitarray(endian='big') passbits.frombytes(password.encode('utf-8')) shuffled_bits = [int(i) for i in str(passbits)[10:-2]] npseed(int.from_bytes(passbits[::2][:32].tobytes(), byteorder='big')) npshuffle(shuffled_bits) self.mainseed = bitarray(shuffled_bits) self.seedsz = 32 self.newseed(0, 4, 4) self.minval = -2**63 self.maxval = 2**63
def test_optimisation(suppliers_allcards, all_ensembles_dict, fitness_list): #setup cost cost_calculator = t.CostCalculator(suppliers_allcards, all_ensembles_dict) bounds = np.array(cost_calculator.ensemble_sizes) - 1 cost_func = lambda p: sum(cost_calculator.get_cost(p)) #setup random seeds npseed(1) rdseed(1) model = ga(cost_func, bounds, N=1000) fitness_list2 = [] num_iterations = 10 for i in range(num_iterations): #Update f = next(model) #get fitness values fitness_list2.append(f[0]) #Output print('\r(%d/%d) ' % (i + 1, num_iterations), end='') print('top ensemble fitness: %1.1f ' % f[0], end='') assert (fitness_list2 == fitness_list)
def main(): args = parse_arguments() # print(args) # setup seed value if args.seed == -1: myseed = 1 myseed = int(timer() * 1e9 % 2**32) else: myseed = args.seed seed(myseed) npseed(myseed) path_input = args.input_image path_output = args.output_image print( f"python3 line_drawer_main.py -s {myseed} -i {path_input} -o {path_output}" ) # test_shading(path_input, path_output) # test_pins_line(path_input, path_output) # test_loss_experiment(path_input, path_output) test_benchmark_looping_line(path_input, path_output)
def seed(self, seed): self._parameters['seed'] = seed if isinstance(self._parameters['seed'], numbers.Number): npseed(self._parameters['seed']) random.seed(seed)
def set_seed(self, value=None): npseed(value)
res_rejection = estimate_patterns_by_rejection(patterns, mallows) print('MIS-AMP1:', res, '\nrejection:', res_rejection) break def test_4_labels(pid=2): from inference.sampling.utils import get_test_case_of_patterns_from_synthetic_4_labels patterns, mallows, p_exact = get_test_case_of_patterns_from_synthetic_4_labels(pid) print(f'p_exact = {p_exact}') verbose = True res = estimate_patterns_by_misamp1(mallows=mallows, patterns=patterns, k=1000, verbose=verbose) print(res) res = estimate_patterns_by_misamp1(mallows=mallows, patterns=patterns, k=100, verbose=verbose) print(res) res = estimate_patterns_by_misamp1(mallows=mallows, patterns=patterns, k=10, verbose=verbose) print(res) res = estimate_patterns_by_misamp1(mallows=mallows, patterns=patterns, k=3, verbose=verbose) print(res) print(f'p_exact = {p_exact}') if __name__ == '__main__': from random import seed from numpy.random import seed as npseed seed(0) npseed(0) test_4_labels(10)
from sys import argv busy = argv[4] if len(argv) > 4 else "5" path = "fuzzme/fuzzme_busy%s_read" % busy num_gens = int(argv[2] if len(argv) > 2 else 30) ind = int(argv[1]) seed = int(argv[3] if len(argv) > 3 else 1) fuzzerlist = [ForkFuzzer, NaiveFuzzer, NaiveFuzzerForkever, FuzzerForkserver] to_test = fuzzerlist[ind] log_file = open( "fuzzme/results_%s/results%s-seed%d-DOSYS%d--%s" % (busy, str(to_test)[6:], seed, DO_SYSCALL, random.randint(0, 9999)), "a") out_file = open("/dev/null", "w") for num_gens in [num_gens + 1]: #range(30,90,5): random.seed(seed) npseed(seed) with redirect_stdout(out_file): try: result = time_fuzzer(to_test, path, num_gens) except OSError as e: log_file.close() raise e #print(str(to_test),"num_gens = %d" % num_gens, result[0][0], result[1], "seed = %d" % seed, "DO_SYSCALL = %d" % DO_SYSCALL, file=log_file) os.closerange(out_file.fileno() + 1, soft_filelimit)