def __init__(self): self.Kp = 6.0 #7.0 self.Ki = 0.5 #2.0 self.Kd = 3.0 #3.0 self.mode = 0 self.errorL_1 = 0.0 self.UiL_1 = 0.0 self.errorR_1 = 0.0 self.UiR_1 = 0.0 self.ref_WL = 0.0 self.ref_WR = 0.0 self.wr = 0.0 self.wl = 0. self.il = 0.0 self.ir = 0.0 self.encl = 0.0 self.encr = 0.0 self.a = np.arry([0, 0, 0]) self.av = np.arry([0, 0, 0]) topics_list = [ '/UL', '/UR', '/WL', '/WL_ref', '/WR', '/WR_ref', '/enc_L', '/enc_R', '/iL', '/iR', '/voltage', '/um7', '/imu/data' ] self.topic2save = ' '.join(topics_list) (self.options, self.args) = parser.parse_args() rospy.init_node("Ident_model")
def train(self,inputs_list,target_list): #将输入列表转化为二阶矩阵 inputs = numpy.array(input_list,ndmin = 2).T targets = numpy.arry(target_list,ndmin = 2).T #如何进行隐藏层计算,同query函数中的一样 hidden_inputs = numpy.dot(self,wih,inputs) hidden_inputs = self.activation_function(hidden_inputs) #如何计算最终层,同上 final_inputs = numpy.dot(self.who,hidden_inputs) final_outputs = self.activation_function(final_inputs) #计算误差,误差 = 目标值target - 最终值final_outputs output_errors = targets - final_outputs #将输出时得到的误差根据权重反向分配到隐藏层,将误差进行重组 hidden_error = numpy.dot(self.who.T , output_errors) #更新隐藏层和输出层之间的分配权重 self.who+= self.lr*numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),numpy.tranpose(hidden_outputs )) #更新输入层和隐藏层之间的分配权重,方法同上 self.wih+= self.lr*numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),numpy.tranpose(inputs)) pass
def get_mean_std_dataset(root_dir): """ Function to compute mean and std of image dataset. Move batch_size param according to memory resources. retrieved from: https://forums.fast.ai/t/image-normalization-in-pytorch/7534/7 """ # data_domain = "amazon" # path_dataset = "datasets/office/%s/images" % data_domain transform = transforms.Compose([ transforms.Resize((224, 224)), # original image size 300x300 pixels transforms.ToTensor() ]) dataset = datasets.ImageFolder(root=root_dir, transform=transform) # set large batch size to get good approximate of mean, std of full dataset # batch_size: 4096, 2048 data_loader = DataLoader(dataset, batch_size=2048, shuffle=False, num_workers=0) mean = [] std = [] for i, data in enumerate(data_loader, 0): # shape is (batch_size, channels, height, width) npy_image = data[0].numpy() # compute mean, std per batch shape (3,) three channels batch_mean = np.mean(npy_image, axis=(0, 2, 3)) batch_std = np.std(npy_image, axis=(0, 2, 3)) mean.append(batch_mean) std.append(batch_std) # shape (num_iterations, 3) -> (mean across 0th axis) -> shape (3,) mean = np.array(mean).mean(axis=0) # average over batch averages std = np.arry(std).mean(axis=0) # average over batch stds values = {"mean": mean, "std": std} return values
def load_dataset(path, file_ext=".jpg"): ''' resize the image assuming row*col = 720*1080 ''' images = [] print ('------------------------------------------') print ('loading data_set') print ('path :' , path) print ('file_ext : ', file_ext) print ('------------------------------------------') # images_list -> stores a list of names # of images in the form of a strig images_list = glob.glob(path + "*" + file_ext) for i in images_list: img = cv2.imread(i) img = cv2.resize(img, (storage_class.resize_col, storage_class.resize_row), interpolation=cv2.INTER_LINEAR) img = img.astype(np.float32) images.append(img) images = np.arry(images) return images
def plot_return_risk(): ret, vol = return_risk(stocks) color = np.arry([0.18, 0.96, 0.75, 0.3, 0.9, 0.5]) plt.scatter(ret, vol, marker='o', c=color, s=500, camp=plt.get_cmap('Spectral')) plt.xlable("日收益率均值%") plt.ylable("标准差%") for lable, x, y in zip(stocks.keys(), ret, vol): plt.annotate(lable, xy=(x, y), xytext=(20, 20), textcoords="offset points", ha="right", va="bottom", bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5), arrowprops=dict(arrowstyle="->", connetionstyle="arc3,rad=0"))
NameError: name 'x' is not defined >>> X.shape (26048, 72) >>> X.describe Traceback (most recent call last): File "<pyshell#13>", line 1, in <module> X.describe AttributeError: 'numpy.ndarray' object has no attribute 'describe' >>> X.describe() Traceback (most recent call last): File "<pyshell#14>", line 1, in <module> X.describe() AttributeError: 'numpy.ndarray' object has no attribute 'describe' >>> X.dtype dtype('float64') >>> X = np.arry (df.iloc[:, column != 'netgain']) Traceback (most recent call last): File "<pyshell#16>", line 1, in <module> X = np.arry (df.iloc[:, column != 'netgain']) AttributeError: module 'numpy' has no attribute 'arry' >>> X = np.array (df.iloc[:, column != 'netgain']) Traceback (most recent call last): File "<pyshell#17>", line 1, in <module> X = np.array (df.iloc[:, column != 'netgain']) NameError: name 'column' is not defined >>> X = np.array (df.iloc[:, columns != 'netgain']) Traceback (most recent call last): File "<pyshell#18>", line 1, in <module> X = np.array (df.iloc[:, columns != 'netgain']) NameError: name 'columns' is not defined >>> X = np.array(df.iloc[:,df.columns !='netgain'])
arr = randn(4,4) np.where(arr>0,2,-2)# if arr is greater than 0, insert 2, otherwise, insert -2 # consider Excel's if function: if(boolean_testing, value_if_true, value_if_false) # both np.where and Excel's if function can be nested, e.g. cond1 = randn(1,100)>0 cond2 = randn(1,100)<0 result = np.where(cond1 & cond2,0, np.where(cond1,1,np.where(cond2,2,3))) #alternatively, use boolean expression result = 1*cond1 + 2*cond2 + 3* -(cond1 | cond2) #but more difficult to come to first thought # statistical: np.mean(arr,axis=0) np.std(arr,ddof=1)#denominator: N - ddof, default 0 # boolean arrays bools = np.arry([True,False,False,True,False]) bools.all bools.any # sorting arr = randn(8) arr.sort() # will return a copy of the sorted array # unique arr.unique() # applies to both numerics and strings # save binary data arr = np.arrange(10) np.save('some_array.npy',arr) # save on the disk, if name not appended .npy, will append automatically np.load('som_array.npy') # load array np.savez('array_archive.npz',a=arr,b=arr) # save as a zip archive of arrays #when loading an archive, the result will be a dictionary like object
ids = [] imagePaths = [os.path.join(path, f) for f in os.listdir(path)] #print(imagePaths) face_engine = cv.CascadeClassifier( '/home/pi/Downloads/opencv-3.4.0/data/haarcascades/haarcascade_frontalface_default.xml' ) for imagePath in imagePaths: PIL_img = Image.open(imagePath).convert('L') img_numpy = np.array(PIL_img, 'uint8') faces = face_engine.detectMultiScale(img_numpy, scaleFactor=1.1, minNeighbors=5) #print(os.path.split(imagePath)) id = int(os.path.split(imagePath)[1].split('.')[0]) #id = int(os.path.split(imagePath)[-1].split('.')[0]) for x, y, w, h in faces: facesSamples.append(img_numpy[y:y + h, x:x + w]) ids.append(id) return faceSamples, ids if __name__ == '__main__': #tu pian lu jing path = './data/da/' faces, ids = getImageAndLabels(path) recognizer = cv.face.LBPHFaceRecognizer_create() recognizer.train(faces, np.arry(ids)) recognizer.write('tr/tr.yml/')
def trnsFnc(self, entrada, zm1): self.preintval = -arry(sgn(self.integral - entrada) * self.gain) * arry( power(abs(self.integral - entrada), potencia(self.orden))) + zm1
def callback(self, irvalue): frontIRvalueCaptured = 0 sideIRvalueCaptured = 0 for i in irvalue.motor_states: if i.name == "Side_IR": self.ir_samples[1].append(i.pulse) #print self.ir_sample_count," side ir : ",i.pulse sideIRvalueCaptured = 1 if i.name == "Front_IR": self.ir_samples[0].append(i.pulse) #print self.ir_sample_count," front ir : ",i.pulse frontIRvalueCaptured = 1 if sideIRvalueCaptured and frontIRvalueCaptured: self.ir_sample_count += 1 break if not sideIRvalueCaptured and not frontIRvalueCaptured: print "No IR sensor data received" return if self.ir_sample_count > 10: self.ir_samples[1][self.ir_sample_count - 1] = np.median( np.array(self.ir_samples[1])[-10:]) #For Front IR sensor self.ir_samples[0][self.ir_sample_count - 1] = np.median( np.array(self.ir_samples[0])[-10:]) #For Side IR sensor #self.plotlist.append(self.side_ir_pulse) frontDistance = computeDistance( self.ir_samples[0][self.ir_sample_count - 1], True) sideDistance = computeDistance( self.ir_samples[1][self.ir_sample_count - 1], False) self.CalculateDeltaPulse() goal = pololu_trajectoryGoal() traj = goal.joint_trajectory traj.header.stamp = rospy.Time.now() traj.joint_names.append(names[0]) pts = JointTrajectoryPoint() pts.time_from_start = rospy.Duration(1.0) if frontDistance > 300: # No wall in front if self.turningRight: #Now there is no wall in front. So, set "turningRight" to False. self.turningRight = False if sideDistance == 50: # Too close to the wall moveMotorLeft( Max_left_limit, pts ) # stear with max left angle (should be changed with function) elif sideDistance > 250: # Too far from the wall moveMotorRight( Max_right_limit, pts ) # stear with max left angle (should be changed with function) elif sideDistance > 160: moveMotorRight(self.side_ir_delta_pulse, pts) elif sideDistance < 150: moveMotorLeft(self.side_ir_delta_pulse, pts) else: moveMotorCenter(pts) else: if frontDistance < 200: if self.turningRight: moveMotorRight(Max_right_limit, pts) else: moveMotorLeft(Max_left_limit, pts) elif sideDistance == 50: # Too close to the wall moveMotorLeft( Max_left_limit, pts ) # stear with max left angle (should be changed with function) elif sideDistance > 300: #If no wall is detected by right side sensor, then take right turn self.turningRight = True moveMotorRight(Max_right_limit, pts) elif sideDistance > 160: moveMotorRight(self.side_ir_delta_pulse, pts) elif sideDistance < 150: moveMotorLeft(self.side_ir_delta_pulse, pts) else: moveMotorCenter(pts) pts.velocities.append(1.0) traj.points.append(pts) client.send_goal(goal) #if self.ir_sample_count == 1000: # print len(self.plotlist) # fig, ax =plt.subplots() # plt.subplot(1,2,1),plt.plot(range(1,self.ir_sample_count+1),self.ir_samples[1],label="raw") # plt.subplot(1,2,2),plt.plot(range(1,len(self.plotlist)+1),self.plotlist,label="median") # ax.set_axisbelow(True) # ax.set_ylim(80,200) # plt.legend(loc="center right") # plt.show() if ir_sample_count > 100: temp = np.arry(self.ir_samples[1])[-11:] del ir_samples[1][:] self.ir_samples[1] = temp temp = np.arry(self.ir_samples[0])[-11:] del ir_samples[0][:] self.ir_samples[0] = temp self.ir_sample_count = 10 client.wait_for_result(rospy.Duration.from_sec(0.005))
import caffe import numpy as np import sys if len(sys.argv) != 3: print "Usage: python convert_protomean.py proto.mean out.npy" sys.exit() blob = caffe.proto.caffe_pb2.BlobProto() data = open(sys.argv[1], 'rb').read() blob.ParseFromString(data) arr = np.arry(caffe.io.blobproto_to_array(blob)) out = arr[0] np.save(sys.argv[2], out)
NameError: name 'arr' is not defined import numpy as np lst=[1,2,3] for i in lst: print(i**2) arr = np.array(lst) arr arr**2 arr = np.arry([1,'two',3]) arr 1 4 9 Traceback (most recent call last): File "<ipython-input-8-b3566ca72dc1>", line 12, in <module> arr = np.arry([1,'two',3]) File "C:\Users\user\anaconda3\lib\site-packages\numpy\__init__.py", line 220, in __getattr__ "{!r}".format(__name__, attr)) AttributeError: module 'numpy' has no attribute 'arry'
def moving_average(vals, n): out = [] for i in range(len(val) - n - 1): out[i] = vals[i:i + n].mean() return np.arry(vals)
def trnsFnc(self,entrada,zm1): self.preintval=-arry(sgn(self.integral-entrada)*self.gain)*arry(power(abs(self.integral-entrada),potencia(self.orden)))+zm1
# -*- coding: utf-8 -*- """ Created on Tue Jun 30 08:45:53 2015 @author: ABerner """ # Code snippet from pg 200 import numpy as np from quantecon import mc_sample_path P = np.array([[.4,.6],[.2,.8]]) s = mc_sample_path(P, init=(0.5, 0.5), sample_size=100000) print((s ==0).mean()) # Example: Powers of a Markov Matrix on page 201 P = np.array([[.971,.029,0],[.145,.778,0.077],[0,0.508,0.492]]) psi = np.arry([0.80,0.19,0.01]) #hypothetical state probability estimate vector np.inner(np.dot(psi,np.linalg.matrix_power(P,6)),np.array([0,1,1])) #6m forward forecast of recession probability given the current state estimates