def preprocess_datasets(self, path_dataset, groupStage):
        PATH_DATA = os_path.join(path_dataset, "4")
        print("(INFO) EVALUATING DATASET ...")
        path_img = sorted(listdir(PATH_DATA))
        if path_img == []:
            return -1, -1
        num_img = len(path_img)

        # Histogram of all images in folder
        hChannel = []
        sChannel = []
        vChannel = []

        for image_path in path_img:
            img = imread(os_path.join(PATH_DATA, image_path))
            img = resize(img, (6000, 4000))
            img = img[500:-500, 750:-750, :]
            # HSV channel
            img = cvtColor(img, COLOR_BGR2HSV)
            # HSV histogram
            h = calcHist([img], [0], None, [256], [0, 256]).reshape(256, )
            s = calcHist([img], [1], None, [256], [0, 256]).reshape(256, )
            v = calcHist([img], [2], None, [256], [0, 256]).reshape(256, )

            hChannel.append(h)
            sChannel.append(s)
            vChannel.append(v)

        # Compute dissimilarity
        maxI = 0
        for i in range(num_img):
            one = []
            for j in range(num_img):
                c1 = np_sum(
                    np_absolute(hChannel[j] - hChannel[i])) / (HEIGHT * WIDTH)
                c2 = np_sum(
                    np_absolute(sChannel[j] - sChannel[i])) / (HEIGHT * WIDTH)
                c = (c1 + c2) / 2
                if c > maxI:
                    maxI = c
                    save = [i, j]

        img0 = path_img[save[0]]
        img1 = path_img[save[1]]

        imgSample1 = os_path.join(PATH_DATA, img0)
        imgSample2 = os_path.join(PATH_DATA, img1)
        return imgSample1, imgSample2
def predict_image(path_of_image, groupStage):
    path_of_model = os_path.join("./CUSTOMIZE_4_USER/MODEL_TRAINING",
                                 groupStage, groupStage + ".pth")
    path_of_feature = os_path.join("./CUSTOMIZE_4_USER/MODEL_TRAINING",
                                   groupStage, groupStage + ".npz")

    start_time = time()
    model = NeuralNet(input_size, hidden_size, num_classes).to(device)
    model.load_state_dict(load(path_of_model))

    data = np_load(path_of_feature)
    [h_max, s_max, v_max] = data['data_max']
    [h_min, s_min, v_min] = data['data_min']

    img = imread(path_of_image)
    img = resize(img, (6000, 4000))
    img = img[500:-500, 750:-750, :]
    img = cvtColor(img, COLOR_BGR2HSV)
    hchan, schan, vchan = split(img)
    h_hist = calcHist([img], [0], None, [256], [0, 256]).reshape(256, )
    s_hist = calcHist([img], [1], None, [256], [0, 256]).reshape(256, )
    v_hist = calcHist([img], [2], None, [256], [0, 256]).reshape(256, )

    hMean = np_mean(hchan) / 255
    DPV_h_max = np_sum(np_absolute(h_hist - h_max)) / (HEIGHT * WIDTH)
    DPV_h_min = np_sum(np_absolute(h_hist - h_min)) / (HEIGHT * WIDTH)

    sMean = np_mean(schan) / 255
    DPV_s_max = np_sum(np_absolute(s_hist - s_max)) / (HEIGHT * WIDTH)
    DPV_s_min = np_sum(np_absolute(s_hist - s_min)) / (HEIGHT * WIDTH)

    vMean = np_mean(vchan) / 255
    DPV_v_max = np_sum(np_absolute(v_hist - v_max)) / (HEIGHT * WIDTH)
    DPV_v_min = np_sum(np_absolute(v_hist - v_min)) / (HEIGHT * WIDTH)

    correlation = np_corrcoef(h_hist, s_hist)[0][1]

    #image_feature = np_array((hMean, DPV_h_max, DPV_h_min, sMean, DPV_s_max, DPV_s_min, vMean, DPV_v_max, DPV_v_min))
    image_feature = np_array((hMean, DPV_h_max, DPV_h_min, sMean, DPV_s_max,
                              DPV_s_min, correlation))
    image_feature = from_numpy(image_feature).to(device).float().view(
        1, input_size)

    with no_grad():
        out_predict = model(image_feature)
        _, predicted_result = torch_max(out_predict.data, 1)
        original = Tensor([[1, 33, 66, 99]])

    # Round xx.xx %
    percentage_result = np_round(
        mm(out_predict.view(1, num_classes), original.view(num_classes,
                                                           1)).item(), 2)

    # Processed time
    processedTime = np_round(time() - start_time, 2)
    #print("Time  ",processedTime)

    return percentage_result, processedTime
        def process_feature(list_path, labelFeature):
            list_dir = sorted(listdir(list_path))
            if list_dir == []:
                return -1
            for image_path in list_dir:
                name_image = os_path.join(list_path, image_path)
                if name_image == imgSample1 or name_image == imgSample2:
                    continue
                img = imread(name_image)
                img = resize(img, (6000, 4000))
                img = img[500:-500, 750:-750, :]
                img = cvtColor(img, COLOR_BGR2HSV)
                hchan, schan, vchan = split(img)
                h_hist = calcHist([img], [0], None, [256],
                                  [0, 256]).reshape(256, )
                s_hist = calcHist([img], [1], None, [256],
                                  [0, 256]).reshape(256, )
                v_hist = calcHist([img], [2], None, [256],
                                  [0, 256]).reshape(256, )

                hMean = np_mean(hchan) / 255
                DPV_h_max = np_sum(
                    np_absolute(h_hist - h_max)) / (HEIGHT * WIDTH)
                DPV_h_min = np_sum(
                    np_absolute(h_hist - h_min)) / (HEIGHT * WIDTH)

                sMean = np_mean(schan) / 255
                DPV_s_max = np_sum(
                    np_absolute(s_hist - s_max)) / (HEIGHT * WIDTH)
                DPV_s_min = np_sum(
                    np_absolute(s_hist - s_min)) / (HEIGHT * WIDTH)

                vMean = np_mean(vchan) / 255
                DPV_v_max = np_sum(
                    np_absolute(v_hist - v_max)) / (HEIGHT * WIDTH)
                DPV_v_min = np_sum(
                    np_absolute(v_hist - v_min)) / (HEIGHT * WIDTH)

                correlation = np_corrcoef(h_hist, s_hist)[0][1]
                # variable = [hMean, DPV_h_max, DPV_h_min, sMean, DPV_s_max, DPV_s_min, vMean, DPV_v_max, DPV_v_min]
                variable = [
                    hMean, DPV_h_max, DPV_h_min, sMean, DPV_s_max, DPV_s_min,
                    correlation
                ]
                feature.append(variable)
                labels.append([labelFeature])
Ejemplo n.º 4
0
 def process_feature(list_path, labelFeature):
     print("Extracting...")
     list_dir = sorted(listdir(list_path))
     if list_dir == []:
         return -1
     for image_path in list_dir:
         name_image = os_path.join(list_path, image_path)
         if name_image == imgSample1 or name_image == imgSample2:
             continue
         img = imread(name_image)
         img = resize(img, (6000,4000))
         img = img[500:-500, 750:-750, :]
         img = cvtColor(img, COLOR_BGR2HSV)
         hchan, schan, vchan = split(img)
         h_hist = calcHist([img], [0], None, [256], [0,256]).reshape(256,)
         s_hist = calcHist([img], [1], None, [256], [0,256]).reshape(256,)
         v_hist = calcHist([img], [2], None, [256], [0,256]).reshape(256,)
         
         # 7 feature consist of :
         # + Compute mean value pixel of H channel
         # + Dissilarity with H channel of "max" image
         # + Dissilarity with H channel of "min" image
         # + Compute mean value pixel of S channel
         # + Dissilarity with S channel of "max" image
         # + Dissilarity with S channel of "min" image
         # + Correlation between histogram of H and S channel
         hMean = np_mean(hchan)/255
         DPV_h_max = np_sum(np_absolute(h_hist - h_max))/(HEIGHT*WIDTH)
         DPV_h_min = np_sum(np_absolute(h_hist - h_min))/(HEIGHT*WIDTH)
         
         sMean = np_mean(schan)/255
         DPV_s_max = np_sum(np_absolute(s_hist - s_max))/(HEIGHT*WIDTH)
         DPV_s_min = np_sum(np_absolute(s_hist - s_min))/(HEIGHT*WIDTH)
         
         vMean = np_mean(vchan)/255
         DPV_v_max = np_sum(np_absolute(v_hist - v_max))/(HEIGHT*WIDTH)
         DPV_v_min = np_sum(np_absolute(v_hist - v_min))/(HEIGHT*WIDTH)
         
         correlation = np_corrcoef(h_hist, s_hist)[0][1]
         # variable = [hMean, DPV_h_max, DPV_h_min, sMean, DPV_s_max, DPV_s_min, vMean, DPV_v_max, DPV_v_min]
         variable = [hMean, DPV_h_max, DPV_h_min, sMean, DPV_s_max, DPV_s_min, correlation]
         feature.append(variable)
         labels.append([labelFeature])
Ejemplo n.º 5
0
 def AmpTrim(self):
     return np_absolute(self.ampTrim)
Ejemplo n.º 6
0
 def Amp(self):
     return np_absolute(self.amp)
Ejemplo n.º 7
0
def predict_image(path_of_image, groupStage):
    path_of_model = os_path.join("./CUSTOMIZE_4_USER/MODEL_TRAINING", groupStage, groupStage+".pth")
    path_of_feature = os_path.join("./CUSTOMIZE_4_USER/MODEL_TRAINING", groupStage, groupStage+".npz")
    hidden_path = os_path.join("./CUSTOMIZE_4_USER/MODEL_TRAINING", groupStage, groupStage+"_hidden.txt")
    # if hidden number file is not existing, return 0
    try:
        with open(hidden_path,"r") as f:
            hidden_size = int(f.readline())
    except FileNotFoundError:
        print("ERROR: No hidden number file in folder")
        return 0.0,0
    
    # Calculate processing time 
    start_time = time()
    model = NeuralNet(input_size, hidden_size, num_classes).to(DEVICE)
    model.load_state_dict(load(path_of_model))

    data = np_load(path_of_feature)
    [h_max, s_max, v_max] = data['data_max']
    [h_min, s_min, v_min] = data['data_min']
    
    img = imread(path_of_image)
    img = resize(img, (6000,4000))
    img = img[500:-500, 750:-750, :]
    img = cvtColor(img, COLOR_BGR2HSV)
    hchan, schan, vchan = split(img)
    h_hist = calcHist([img], [0], None, [256], [0,256]).reshape(256,)
    s_hist = calcHist([img], [1], None, [256], [0,256]).reshape(256,)
    v_hist = calcHist([img], [2], None, [256], [0,256]).reshape(256,)
    
    # 7 features consist of :
    # + Compute mean value pixel of H channel
    # + Dissilarity with H channel of "max" image
    # + Dissilarity with H channel of "min" image
    # + Compute mean value pixel of S channel
    # + Dissilarity with S channel of "max" image
    # + Dissilarity with S channel of "min" image
    # + Correlation between histogram of H and S channel
    hMean = np_mean(hchan)/255
    DPV_h_max = np_sum(np_absolute(h_hist - h_max))/(HEIGHT*WIDTH)
    DPV_h_min = np_sum(np_absolute(h_hist - h_min))/(HEIGHT*WIDTH)
    
    sMean = np_mean(schan)/255
    DPV_s_max = np_sum(np_absolute(s_hist - s_max))/(HEIGHT*WIDTH)
    DPV_s_min = np_sum(np_absolute(s_hist - s_min))/(HEIGHT*WIDTH)
    
    vMean = np_mean(vchan)/255
    DPV_v_max = np_sum(np_absolute(v_hist - v_max))/(HEIGHT*WIDTH)
    DPV_v_min = np_sum(np_absolute(v_hist - v_min))/(HEIGHT*WIDTH)

    correlation = np_corrcoef(h_hist, s_hist)[0][1]
    
    #image_feature = np_array((hMean, DPV_h_max, DPV_h_min, sMean, DPV_s_max, DPV_s_min, vMean, DPV_v_max, DPV_v_min))
    image_feature = np_array((hMean, DPV_h_max, DPV_h_min, sMean, DPV_s_max, DPV_s_min, correlation))
    image_feature = from_numpy(image_feature).to(DEVICE).float().view(1, input_size)

    with no_grad():
        out_predict = model(image_feature)
        
    # Round xx.xx %
    percentage_result = np_round(out_predict.item()*99, 2)
    if percentage_result >99.99:
        percentage_result = 99.99

    if percentage_result <1.0:
        percentage_result = 1.0    
    # Processed time 
    processedTime = np_round(time()-start_time, 2)

    return percentage_result, processedTime