Ejemplo n.º 1
0
def stellingwerf_pdm_theta(times, mags, errs, frequency,
                           binsize=0.05, minbin=9):
    '''
    This calculates the Stellingwerf PDM theta value at a test frequency.

    '''

    period = 1.0/frequency
    fold_time = times[0]

    phased = phase_magseries(times,
                             mags,
                             period,
                             fold_time,
                             wrap=False,
                             sort=True)

    phases = phased['phase']
    pmags = phased['mags']
    bins = np.arange(0.0, 1.0, binsize)
    nbins = bins.size

    binnedphaseinds = npdigitize(phases, bins)

    binvariances = []
    binndets = []
    goodbins = 0

    for x in npunique(binnedphaseinds):

        thisbin_inds = binnedphaseinds == x
        thisbin_phases = phases[thisbin_inds]
        thisbin_mags = pmags[thisbin_inds]

        if thisbin_mags.size > minbin:
            thisbin_variance = npvar(thisbin_mags,ddof=1)
            binvariances.append(thisbin_variance)
            binndets.append(thisbin_mags.size)
            goodbins = goodbins + 1

    # now calculate theta
    binvariances = nparray(binvariances)
    binndets = nparray(binndets)

    theta_top = npsum(binvariances*(binndets - 1)) / (npsum(binndets) -
                                                      goodbins)
    theta_bot = npvar(pmags,ddof=1)
    theta = theta_top/theta_bot

    return theta
Ejemplo n.º 2
0
def variance(numbers):
    if numpy:
        return npvar(numbers)
    elif py3statistics:
        return p3var(numbers)
    mn = mean(numbers)
    variance = old_div(sum([(e - mn)**2 for e in numbers]), len(numbers))
Ejemplo n.º 3
0
    def decomp(self):
        r""" Get the fixed and random effects.

        Returns
        -------
        fixed_effects : Fixed effects.
        random_effects : Random effects.
        """
        from numpy import var as npvar

        decomp = dict(fixed_effects={}, random_effects={})

        for fe in self.fixed_effects:
            if hasattr(fe, "offset"):
                continue
            decomp["fixed_effects"][fe.name] = npvar(fe.value())

        for re in self.covariance_matrices:
            decomp["random_effects"][re.name] = re.scale

        total = 0
        for _, v in iter(decomp.items()):
            for _, vi in iter(v.items()):
                total += vi

        for k0, v in iter(decomp.items()):
            for k1, vi in iter(v.items()):
                decomp[k0][k1] = vi / total

        return decomp
Ejemplo n.º 4
0
def variance(numbers):
    if numpy:
        return npvar(numbers)
    elif py3statistics:
        return p3var(numbers)
    mn = mean(numbers)
    variance = sum([(e - mn) ** 2 for e in numbers]) / float(len(numbers))
    return variance
Ejemplo n.º 5
0
    def var(self, price_list):
        """
        This calculates the variance of a time series over the last
        self._nvar days
        """

        self._check_list_input('var', self._nvar, price_list)
        tmp_list = price_list[-self._nvar:]
        result = npvar(tmp_list)
        return result
Ejemplo n.º 6
0
def demo_analysis(wavfilepaht):
    # オーディオロード
    sig = SignalData().load_wav(wavfilepaht, 'M')
    # スペクトログラム
    spgram = sig.slice_time_ms(80, 120).gwt()
    # スペクトル(インパクト音)
    spec_impact = spgram.slice_time_ms(20, 23).time_average()  # .plot().show()

    # ガワ感
    from numpy import var as npvar

    g = spec_impact.liftering(lifter=5, mode="low").slice_freq_hz(1000, 4500).info().get_data()
    gawa = npvar(g)
    print gawa
    # 硬さ
    katasa = spec_impact.liftering(lifter=15, mode="low").slice_freq_khz(1, 4.5).cof()  # .plot().show()
    print katasa

    return katasa, gawa
Ejemplo n.º 7
0
def lightcurve_ptp_measures(ftimes, fmags, ferrs):
    '''This calculates various point-to-point measures (`eta` in Kim+ 2014).

    Parameters
    ----------

    ftimes,fmags,ferrs : np.array
        The input mag/flux time-series with all non-finite elements removed.

    Returns
    -------

    dict
        A dict with values of the point-to-point measures, including the `eta`
        variability index (often used as its inverse `inveta` to have the same
        sense as increasing variability index -> more likely a variable star).

    '''

    ndet = len(fmags)

    if ndet > 9:

        timediffs = npdiff(ftimes)

        # get rid of stuff with time diff = 0.0
        nzind = npnonzero(timediffs)
        ftimes, fmags, ferrs = ftimes[nzind], fmags[nzind], ferrs[nzind]

        # recalculate ndet and diffs
        ndet = ftimes.size
        timediffs = npdiff(ftimes)

        # calculate the point to point measures
        p2p_abs_magdiffs = npabs(npdiff(fmags))
        p2p_squared_magdiffs = npdiff(fmags) * npdiff(fmags)

        robstd = npmedian(npabs(fmags - npmedian(fmags))) * 1.483
        robvar = robstd * robstd

        # these are eta from the Kim+ 2014 paper - ratio of point-to-point
        # difference to the variance of the entire series

        # this is the robust version
        eta_robust = npmedian(p2p_abs_magdiffs) / robvar
        eta_robust = eta_robust / (ndet - 1.0)

        # this is the usual version
        eta_normal = npsum(p2p_squared_magdiffs) / npvar(fmags)
        eta_normal = eta_normal / (ndet - 1.0)

        timeweights = 1.0 / (timediffs * timediffs)

        # this is eta_e modified for uneven sampling from the Kim+ 2014 paper
        eta_uneven_normal = ((npsum(timeweights * p2p_squared_magdiffs) /
                              (npvar(fmags) * npsum(timeweights))) *
                             npmean(timeweights) *
                             (ftimes.max() - ftimes.min()) *
                             (ftimes.max() - ftimes.min()))

        # this is robust eta_e modified for uneven sampling from the Kim+ 2014
        # paper
        eta_uneven_robust = ((npsum(timeweights * p2p_abs_magdiffs) /
                              (robvar * npsum(timeweights))) *
                             npmedian(timeweights) * (ftimes[-1] - ftimes[0]) *
                             (ftimes[-1] - ftimes[0]))

        return {
            'eta_normal': eta_normal,
            'eta_robust': eta_robust,
            'eta_uneven_normal': eta_uneven_normal,
            'eta_uneven_robust': eta_uneven_robust
        }

    else:

        return None
Ejemplo n.º 8
0
def stellingwerf_pdm_theta(times,
                           mags,
                           errs,
                           frequency,
                           binsize=0.05,
                           minbin=9):
    '''
    This calculates the Stellingwerf PDM theta value at a test frequency.

    Parameters
    ----------

    times,mags,errs : np.array
        The input time-series and associated errors.

    frequency : float
        The test frequency to calculate the theta statistic at.

    binsize : float
        The phase bin size to use.

    minbin : int
        The minimum number of items in a phase bin to consider in the
        calculation of the statistic.

    Returns
    -------

    theta_pdm : float
        The value of the theta statistic at the specified `frequency`.


    '''

    period = 1.0 / frequency
    fold_time = times[0]

    phased = phase_magseries(times,
                             mags,
                             period,
                             fold_time,
                             wrap=False,
                             sort=True)

    phases = phased['phase']
    pmags = phased['mags']
    bins = nparange(0.0, 1.0, binsize)

    binnedphaseinds = npdigitize(phases, bins)

    binvariances = []
    binndets = []
    goodbins = 0

    for x in npunique(binnedphaseinds):

        thisbin_inds = binnedphaseinds == x
        thisbin_mags = pmags[thisbin_inds]

        if thisbin_mags.size > minbin:
            thisbin_variance = npvar(thisbin_mags, ddof=1)
            binvariances.append(thisbin_variance)
            binndets.append(thisbin_mags.size)
            goodbins = goodbins + 1

    # now calculate theta
    binvariances = nparray(binvariances)
    binndets = nparray(binndets)

    theta_top = npsum(binvariances *
                      (binndets - 1)) / (npsum(binndets) - goodbins)
    theta_bot = npvar(pmags, ddof=1)
    theta = theta_top / theta_bot

    return theta
Ejemplo n.º 9
0
def lightcurve_ptp_measures(ftimes, fmags, ferrs):
    '''
    This calculates various point-to-point measures (eta in Kim+ 2014).

    '''

    ndet = len(fmags)

    if ndet > 9:

        timediffs = npdiff(ftimes)

        # get rid of stuff with time diff = 0.0
        nzind = npnonzero(timediffs)
        ftimes, fmags, ferrs = ftimes[nzind], fmags[nzind], ferrs[nzind]

        # recalculate ndet and diffs
        ndet = ftimes.size
        timediffs = npdiff(ftimes)

        # calculate the point to point measures
        p2p_abs_magdiffs = npabs(npdiff(fmags))
        p2p_squared_magdiffs = npdiff(fmags) * npdiff(fmags)

        robstd = npmedian(npabs(fmags - npmedian(fmags))) * 1.483
        robvar = robstd * robstd

        # these are eta from the Kim+ 2014 paper - ratio of point-to-point
        # difference to the variance of the entire series

        # this is the robust version
        eta_robust = npmedian(p2p_abs_magdiffs) / robvar
        eta_robust = eta_robust / (ndet - 1.0)

        # this is the usual version
        eta_normal = npsum(p2p_squared_magdiffs) / npvar(fmags)
        eta_normal = eta_normal / (ndet - 1.0)

        timeweights = 1.0 / (timediffs * timediffs)

        # this is eta_e modified for uneven sampling from the Kim+ 2014 paper
        eta_uneven_normal = ((npsum(timeweights * p2p_squared_magdiffs) /
                              (npvar(fmags) * npsum(timeweights))) *
                             npmean(timeweights) *
                             (ftimes.max() - ftimes.min()) *
                             (ftimes.max() - ftimes.min()))

        # this is robust eta_e modified for uneven sampling from the Kim+ 2014
        # paper
        eta_uneven_robust = ((npsum(timeweights * p2p_abs_magdiffs) /
                              (robvar * npsum(timeweights))) *
                             npmedian(timeweights) * (ftimes[-1] - ftimes[0]) *
                             (ftimes[-1] - ftimes[0]))

        return {
            'eta_normal': eta_normal,
            'eta_robust': eta_robust,
            'eta_uneven_normal': eta_uneven_normal,
            'eta_uneven_robust': eta_uneven_robust
        }

    else:

        return None