Ejemplo n.º 1
0
def nsigtf_real(*args):

    nargin = len(args)

    if nargin < 4:
        raiseValueError('Not enough input arguments')
    
    # iscell
    if iscell(c) == 0:
        if np.ndims(c) == 2:
            N, chan_len = c.shape
            CH = 1
            # 
            c = mat2cell(c.',chan_len,ones(1,N)).')
        else:
            N, chan_len, CH = c.shape
            ctemp = mat2cell(np.permute(c,[2,1,3]),chan_len,np.ones((1,N)),np.ones((1,CH)))
            c = np.permute(ctemp,[2,3,1])
    else:
        CH, N = c.shape

    posit = np.cumsum(shift)
    NN = posit[-1]
    posit = posit - shift[1]

    fr = np.zeros((NN,CH))

    for ii in range(N):
        Lg = len(g[ii])
        win_range = (posit[ii]+(-np.floor(Lg/2):math.ceil(Lg/2)-1)) % NN + 1
        temp = np.fft(c[ii], [], 1) * len(c[ii])

        if phasemode == 'global':
            fsNewBins = c[ii].shape[0]
            fkBins = posit[ii]
            displace = fkBins - np.floor(fkBins/fsNewBins) * fsNewBins
            temp = np.roll(temp, -displace)
        
        # 
        temp = temp[]

        fr[win_range,:] = fr[win_Range,:] + temp * g[ii][Lg-np.floor(Lg/2)+1:Lg, 1:np.ceil(Lg/2)]
    
        nyqBin = np.floor(Ls/2) + 1

        #
        fr[nyqBin+1:end] = conj( fr(nyqBin  - (~logical(mod(Ls,2))) : -1 : 2) )

        fr = np.real(np.fft.ifft(fr))

    return fr
Ejemplo n.º 2
0
def generate_files_sony(old_subj_data, savepath):
    num_subj = len(old_subj_data)
    num_cond = len(old_subj_data[0])
    subj_data = [[dcpy(empty_map) for i in range(num_cond)]
                 for j in range(num_subj)]
    clip_size = old_subj_data[0][0]['trials'].shape[2] / 2
    num_electrodes = old_subj_data[0][0]['trials'].shape[1]
    for subj_ind in range(num_subj):
        for cond in range(num_cond):
            conds = conds_map[cond]
            old_entry = old_subj_data[subj_ind][cond]
            for i in range(2):
                clip = range(clip_size * i, clip_size * (i + 1))
                entry = subj_data[subj_ind][conds[i]]
                entry['trials'] = concat(entry['trials'],
                                         old_entry['trials'][:, :, clip])

    if not os.path.isdir(savepath):
        os.makedirs(savepath)

    dats = []
    dats_det = []
    for cond in range(num_cond):
        print 'Generating condition', cond + 1, 'files...'
        dats.append(np.zeros((0, clip_size, num_electrodes)))
        dats_det.append(np.zeros((0, clip_size, num_electrodes)))
        for subj in range(num_subj):
            trials = subj_data[subj][cond]['trials']
            dats[-1] = concat(dats[-1], permute(trials, axes=(0, 2, 1)))
        savename = os.path.join(savepath, cond_names_map[cond])
        savemat(savename, {'dat': dats[-1]})
        dats_det[-1] = detrend(dats[-1], axis=1)
        savename = os.path.join(savepath, cond_names_map[cond] + '_det')
        savemat(savename, {'dat': dats_det[-1]})
Ejemplo n.º 3
0
 def invariant_perturbation(equation_system, constants, variables, operators):
     permuted_system = np.permute(equation_system)
     equation = equation_system.join(',')
     all_vars = [chr(i) for i in range(97, 123)]
     for var in variables():
         replacement = np.random.choice(all_vars)
         all_vars.remove(replacement)
         equation = equation.replace(var, replacement)
         for i, char in enumerate(equation):
             if char in ['+', '-']:
                 left_begin = EquivalenceDataset.get_expression_subtree_suffix(equation, i - 1, operators)
                 right_end = EquivalenceDataset.get
Ejemplo n.º 4
0
def decode_segmap(mask, unk_label=255):
    """Decode segmentation label prediction as RGB images
    Args:
        mask (torch.tensor): class map with dimensions (B, M,N), where the value at
        a given location is the integer denoting the class index.
    Returns:
        (np.ndarray): colored image of shape (BM, BN, 3)
    """
    mask[mask == unk_label] == 0
    mask = mask.numpy()
    cmap = get_pascal_labels()
    cmap_exp = cmap[..., None]
    colored = cmap[mask].squeeze()
    grid = make_grid(torch.tensor(colored).permute(0, 3, 1, 2))
    return np.permute(grid, (1, 2, 0))
Ejemplo n.º 5
0
def generate_data(path, savepath):
    subjs = [item for item in os.listdir(path) if '.' not in item]
    num_cond = get_num_conds(os.path.join(path, subjs[0]))
    subj_data = [[dcpy(empty_map) for i in range(num_cond)]
                 for j in range(len(subjs))]
    for subj_ind in xrange(len(subjs)):
        subj = subjs[subj_ind]
        print 'Adding subject', subj
        subj_path = os.path.join(path, subj)
        files = [item for item in os.listdir(subj_path) if 'Raw' in item]
        for data_ind in xrange(len(files)):
            data_file = files[data_ind]
            cond = int(data_file[data_file.rfind('c00') + 3]) - 1
            data = loadmat(os.path.join(subj_path, data_file))
            raw_data = data['RawTrial'][:, electrodes]
            num_TP = raw_data.shape[0] / data['NmbEpochs']
            raw_data = permute(raw_data.reshape(num_TP, data['NmbEpochs'],
                                                len(electrodes)),
                               axes=(1, 2, 0))
            valid_epochs = [i for i in range(data['NmbEpochs']) if \
                np.sum(data['IsEpochOK'][i]) > num_channels/2]
            raw_data = raw_data[valid_epochs, :, :]
            num_epochs = raw_data.shape[0]
            if num_epochs:
                entry = subj_data[subj_ind][cond]
                entry['groups'].append(num_epochs)
                entry['trials'] = concat(entry['trials'], raw_data)
                raw_data_mean = np.mean(raw_data, axis=0)[None, :]
                entry['mean_trials'] = concat(entry['mean_trials'],
                                              raw_data_mean)
        for cond in xrange(num_cond):
            entry = subj_data[subj_ind][cond]
            entry['groups'] = np.squeeze(entry['groups'])
            entry['trials'] = np.squeeze(entry['trials'])
            entry['mean_trials'] = np.squeeze(entry['mean_trials'])

    if not os.path.isdir(savepath):
        os.makedirs(savepath)

    savemat(os.path.join(savepath, 'subj_data'), {'subj_data': subj_data})
    return subj_data
def perturbImage(img, pmesh):
    mr = 89
    mc = 69
    tr = 100
    tc = 100 
    mg = 5
    [mh, mw,c] = img.shape
    mx = np.linspace(mh, 1, mr)
    my = np.linspace(1, mw, mc)
    [my,mx] = np.meshgrid(mx,my)
    smesh = np.concatenate((mx,my),axis=1)
    px = pmesh[:, 0]
    py = pmesh[:, 1]
    minx = np.min(px)
    maxx = np.max(px)
    miny = np.min(py)
    maxy = np.max(py)
    px = (px - minx) / (maxx - minx)
    py = (py - miny) / (maxy - miny)
    px = px * (tc - 2 * mg - 1) + 1 + mg
    py = py * (tr - 2 * mg - 1) + 1 + mg
    pmesh = np.concatenate((px, py),axis=0);
    print(pmesh.shape)
    fm = localWarp(pmesh, smesh, tr, tc, mr, mc);
    fm = np.reshape(fm, 2, tr, tc);
    fm = np.permute(fm, [2, 3, 1]);

    fm = np.concatenate((fm[2 : end, :, :], fm[1, :, :]),axis=0)
    fm = np.concatenate((fm[:, 2 : end, :], fm[:, 1, :]),axis = 1)

    pimg = imgMeshWarp(img, fm)
    pv = pmesh
    pv = np.reshape(pv, mc, mr, 2)
    pv = pv[:, end : -1 : 1, :]
    pv = np.reshape(pv, (-1, 2))

    return pimg
Ejemplo n.º 7
0
def save_np_img(fname, x):
    if x.shape[0] == 1:
        x = np.tile(x, (3, 1, 1))
    img = Image.fromarray((np.permute(x, (1, 2, 0)) * 255.0).astype(np.uint8),
                          'RGB')
    img.save(fname)
Ejemplo n.º 8
0
def randomize_position(pos):
    # Find non indel species
    I = np.where(pos != '-')
    Iperm = np.permute(I)
    return pos[Iperm]
Ejemplo n.º 9
0
 def shuffle_random(x, ind):
     return np.permute(x)