Ejemplo n.º 1
0
    def test_matmul(self):
        size = 4
        shard_size = 2
        np.random.seed(0)
        A = np.random.randn(size, size)
        B = np.random.randn(size, size)
        C = np.dot(A, B)

        shard_sizes = (shard_size, shard_size)
        A_sharded = BigMatrix("matmul_test_A",
                              shape=A.shape,
                              shard_sizes=shard_sizes,
                              write_header=True)
        A_sharded.free()
        shard_matrix(A_sharded, A)
        B_sharded = BigMatrix("matmul_test_B",
                              shape=B.shape,
                              shard_sizes=shard_sizes,
                              write_header=True)
        B_sharded.free()
        shard_matrix(B_sharded, B)
        Temp = BigMatrix("matmul_test_Temp",
                         shape=[A.shape[0], B.shape[1], B.shape[0], 100],
                         shard_sizes=[
                             A_sharded.shard_sizes[0],
                             B_sharded.shard_sizes[1], 1, 1
                         ],
                         write_header=True)
        C_sharded = BigMatrix("matmul_test_C",
                              shape=C.shape,
                              shard_sizes=shard_sizes,
                              write_header=True)

        b_fac = 2
        config = npw.config.default()
        compiled_matmul = frontend.lpcompile(matmul)
        program = compiled_matmul(A_sharded, B_sharded,
                                  A_sharded.num_blocks(0),
                                  A_sharded.num_blocks(1),
                                  B_sharded.num_blocks(1), b_fac, Temp,
                                  C_sharded)
        program_executable = lp.LambdaPackProgram(program, config=config)
        program_executable.start()
        job_runner.lambdapack_run(program_executable,
                                  pipeline_width=1,
                                  idle_timeout=5,
                                  timeout=60)
        executor = fs.ThreadPoolExecutor(1)
        all_futures = [
            executor.submit(job_runner.lambdapack_run,
                            program_executable,
                            pipeline_width=1,
                            idle_timeout=5,
                            timeout=60)
        ]
        program_executable.wait()
        program_executable.free()
        C_remote = C_sharded.numpy()
        assert (np.allclose(C, C_remote))
Ejemplo n.º 2
0
 def test_single_multiaxis(self):
     X = np.random.randn(8, 8, 8, 8)
     X_sharded = BigMatrix("multiaxis", shape=X.shape, shard_sizes=X.shape)
     print("BLOCK_IDXS", X_sharded.block_idxs)
     shard_matrix(X_sharded, X)
     print("BLOCK_IDXS_EXIST", X_sharded.block_idxs_exist)
     X_sharded_local = X_sharded.numpy()
     X_sharded.free()
     assert (np.all(X_sharded_local == X))
Ejemplo n.º 3
0
 def test_sharded_multiaxis(self):
     X = np.random.randn(8, 8, 8, 8)
     shard_sizes = tuple(map(int, np.array(X.shape)/2))
     X_sharded = BigMatrix("multiaxis_2", shape=X.shape,
                           shard_sizes=shard_sizes)
     shard_matrix(X_sharded, X)
     print("BLOCK_IDXS", X_sharded.block_idxs)
     X_sharded_local = X_sharded.numpy()
     print(X_sharded.free())
     assert(np.all(X_sharded_local == X))
Ejemplo n.º 4
0
 def test_matrix_header(self):
     np.random.seed(0)
     X = np.random.randn(128, 128)
     shard_sizes = tuple(map(int, np.array(X.shape) / 2))
     X_sharded = local_numpy_init(X,
                                  shard_sizes=shard_sizes,
                                  write_header=True)
     X_sharded_local = X_sharded.numpy()
     assert (np.all(X == X_sharded_local))
     X_sharded_2 = BigMatrix(X_sharded.key)
     X_sharded_local_2 = X_sharded_2.numpy()
     assert (np.all(X == X_sharded_local_2))
Ejemplo n.º 5
0
def run_experiment(problem_size, shard_size, pipeline, num_priorities, lru,
                   eager, truncate, max_cores, start_cores, trial,
                   launch_granularity, timeout, log_granularity,
                   autoscale_policy, standalone, warmup, verify, matrix_exists,
                   read_limit, write_limit):
    # set up logging
    invoke_executor = fs.ThreadPoolExecutor(1)
    logger = logging.getLogger()
    region = wc.default()["account"]["aws_region"]
    print("REGION", region)
    for key in logging.Logger.manager.loggerDict:
        logging.getLogger(key).setLevel(logging.CRITICAL)
    logger.setLevel(logging.DEBUG)
    arg_bytes = pickle.dumps(
        (problem_size, shard_size, pipeline, num_priorities, lru, eager,
         truncate, max_cores, start_cores, trial, launch_granularity, timeout,
         log_granularity, autoscale_policy, read_limit, write_limit))
    arg_hash = hashlib.md5(arg_bytes).hexdigest()
    log_file = "{0}.log".format(arg_hash)
    fh = logging.FileHandler(log_file)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    fh.setFormatter(formatter)
    ch = logging.StreamHandler()
    ch.setLevel(logging.INFO)
    ch.setFormatter(formatter)
    logger.addHandler(fh)
    logger.addHandler(ch)
    logger.info("Logging to {0}".format(log_file))
    if standalone:
        extra_env = {
            "AWS_ACCESS_KEY_ID": os.environ["AWS_ACCESS_KEY_ID"],
            "AWS_SECRET_ACCESS_KEY": os.environ["AWS_ACCESS_KEY_ID"],
            "OMP_NUM_THREADS": "1",
            "AWS_DEFAULT_REGION": region
        }
        config = wc.default()
        config['runtime']['s3_bucket'] = 'numpywrenpublic'
        key = "pywren.runtime/pywren_runtime-3.6-numpywren-standalone.tar.gz"
        config['runtime']['s3_key'] = key
        pwex = pywren.standalone_executor(config=config)
    else:
        extra_env = {"AWS_DEFAULT_REGION": region}
        config = wc.default()
        config['runtime']['s3_bucket'] = 'numpywrenpublic-us-east-1'
        key = "pywren.runtime/pywren_runtime-3.6-numpywren-08-25-2018.tar.gz"
        config['runtime']['s3_key'] = key
        pwex = pywren.default_executor(config=config)

    if (not matrix_exists):
        X = np.random.randn(problem_size, 1)
        shard_sizes = [shard_size, 1]
        X_sharded = BigMatrix("cholesky_test_{0}_{1}".format(
            problem_size, shard_size),
                              shape=X.shape,
                              shard_sizes=shard_sizes,
                              write_header=True,
                              autosqueeze=False,
                              bucket="numpywrentop500test",
                              hash_keys=False)
        shard_matrix(X_sharded, X)
        print("Generating PSD matrix...")
        t = time.time()
        print(X_sharded.shape)
        XXT_sharded = binops.gemm(pwex,
                                  X_sharded,
                                  X_sharded.T,
                                  overwrite=False)
        e = time.time()
        print("GEMM took {0}".format(e - t))
    else:
        X_sharded = BigMatrix("cholesky_test_{0}_{1}".format(
            problem_size, shard_size),
                              autosqueeze=False,
                              hash_keys=False,
                              bucket="numpywrentop500test")
        key_name = binops.generate_key_name_binop(X_sharded, X_sharded.T,
                                                  "gemm")
        XXT_sharded = BigMatrix(key_name,
                                hash_keys=False,
                                bucket="numpywrentop500test")
    XXT_sharded.lambdav = problem_size * 10
    if (verify):
        A = XXT_sharded.numpy()
        print("Computing local cholesky")
        L = np.linalg.cholesky(A)

    t = time.time()
    instructions, trailing, L_sharded = compiler._chol(XXT_sharded,
                                                       truncate=truncate)
    pipeline_width = args.pipeline
    if (lru):
        cache_size = 5
    else:
        cache_size = 0
    pywren_config = pwex.config
    config = npw.config.default()
    program = lp.LambdaPackProgram(instructions,
                                   executor=pywren.lambda_executor,
                                   pywren_config=pywren_config,
                                   num_priorities=num_priorities,
                                   eager=eager,
                                   config=config,
                                   write_limit=write_limit,
                                   read_limit=read_limit)
    warmup_start = time.time()
    if (warmup):
        warmup_sleep = 170

        def warmup_fn(x):
            program.incr_up(1)
            time.sleep(warmup_sleep)
            program.decr_up(1)

        print("Warming up...")
        futures = pwex.map(warmup_fn, range(max_cores))
        last_spinup = time.time()
        while (True):
            if ((time.time() - last_spinup) > 0.75 * warmup_sleep):
                print("Calling pwex.map..")
                futures = pwex.map(warmup_fn, range(max_cores))
                last_spinup = time.time()
            time.sleep(2)
            if (program.get_up() is None):
                up_workers = 0
            else:
                up_workers = int(program.get_up())
            print("{0} workers alive".format(up_workers))
            if (up_workers >= max_cores):
                time.sleep(warmup_sleep)
                break

    warmup_end = time.time()
    print("Warmup took {0} seconds".format(warmup_end - warmup_start))
    e = time.time()
    print("Program compile took {0} seconds".format(e - t))
    print("program.hash", program.hash)
    REDIS_CLIENT = program.control_plane.client
    done_counts = []
    ready_counts = []
    post_op_counts = []
    not_ready_counts = []
    running_counts = []
    sqs_invis_counts = []
    sqs_vis_counts = []
    up_workers_counts = []
    busy_workers_counts = []
    read_objects = []
    write_objects = []
    all_read_timeouts = []
    all_write_timeouts = []
    all_redis_timeouts = []
    times = [time.time()]
    flops = [0]
    reads = [0]
    writes = [0]
    print("LRU", lru)
    print("eager", eager)
    exp = {}
    exp["redis_done_counts"] = done_counts
    exp["redis_ready_counts"] = ready_counts
    exp["redis_post_op_counts"] = post_op_counts
    exp["redis_not_ready_counts"] = not_ready_counts
    exp["redis_running_counts"] = running_counts
    exp["sqs_invis_counts"] = sqs_invis_counts
    exp["sqs_vis_counts"] = sqs_vis_counts
    exp["busy_workers"] = busy_workers_counts
    exp["up_workers"] = up_workers_counts
    exp["times"] = times
    exp["lru"] = lru
    exp["priority"] = num_priorities
    exp["eager"] = eager
    exp["truncate"] = truncate
    exp["max_cores"] = max_cores
    exp["problem_size"] = problem_size
    exp["shard_size"] = shard_size
    exp["pipeline"] = pipeline
    exp["flops"] = flops
    exp["reads"] = reads
    exp["writes"] = writes
    exp["read_objects"] = read_objects
    exp["write_objects"] = write_objects
    exp["read_timeouts"] = all_read_timeouts
    exp["write_timeouts"] = all_write_timeouts
    exp["redis_timeouts"] = all_redis_timeouts
    exp["trial"] = trial
    exp["launch_granularity"] = launch_granularity
    exp["log_granularity"] = log_granularity
    exp["autoscale_policy"] = autoscale_policy
    exp["standalone"] = standalone
    exp["program"] = program
    exp["time_steps"] = 1
    exp["failed"] = False

    program.start()
    t = time.time()
    logger.info("Starting with {0} cores".format(start_cores))
    invoker = fs.ThreadPoolExecutor(1)
    all_future_futures = invoker.submit(lambda: pwex.map(
        lambda x: job_runner.lambdapack_run(program,
                                            pipeline_width=pipeline_width,
                                            cache_size=cache_size,
                                            timeout=timeout),
        range(start_cores),
        extra_env=extra_env))
    # print(all_future_futures.result())
    all_futures = [all_future_futures]
    # print([f.result() for f in all_futures])
    start_time = time.time()
    last_run_time = start_time
    print(program.program_status())
    print("QUEUE URLS", len(program.queue_urls))
    total_lambda_epochs = start_cores
    try:
        while (program.program_status() == lp.PS.RUNNING):
            time.sleep(log_granularity)
            curr_time = int(time.time() - start_time)
            p = program.get_progress()
            if (p is None):
                print("no progress...")
                continue
            else:
                p = int(p)
            times.append(int(time.time()))
            max_pc = p
            waiting = 0
            running = 0
            for i, queue_url in enumerate(program.queue_urls):
                client = boto3.client('sqs')
                attrs = client.get_queue_attributes(
                    QueueUrl=queue_url,
                    AttributeNames=[
                        'ApproximateNumberOfMessages',
                        'ApproximateNumberOfMessagesNotVisible'
                    ])['Attributes']
                waiting += int(attrs["ApproximateNumberOfMessages"])
                running += int(attrs["ApproximateNumberOfMessagesNotVisible"])
            sqs_invis_counts.append(running)
            sqs_vis_counts.append(waiting)
            busy_workers = REDIS_CLIENT.get("{0}_busy".format(program.hash))
            if (busy_workers == None):
                busy_workers = 0
            else:
                busy_workers = int(busy_workers)
            up_workers = program.get_up()

            if (up_workers == None):
                up_workers = 0
            else:
                up_workers = int(up_workers)
            up_workers_counts.append(up_workers)
            busy_workers_counts.append(busy_workers)

            logger.debug("{2}: Up Workers: {0}, Busy Workers: {1}".format(
                up_workers, busy_workers, curr_time))
            if ((curr_time % INFO_FREQ) == 0):
                logger.info("Waiting: {0}, Currently Processing: {1}".format(
                    waiting, running))
                logger.info("{2}: Up Workers: {0}, Busy Workers: {1}".format(
                    up_workers, busy_workers, curr_time))

            current_gflops = program.get_flops()
            if (current_gflops is None):
                current_gflops = 0
            else:
                current_gflops = int(current_gflops) / 1e9

            flops.append(current_gflops)
            current_gbytes_read = program.get_read()
            if (current_gbytes_read is None):
                current_gbytes_read = 0
            else:
                current_gbytes_read = int(current_gbytes_read) / 1e9

            reads.append(current_gbytes_read)
            current_gbytes_write = program.get_write()
            if (current_gbytes_write is None):
                current_gbytes_write = 0
            else:
                current_gbytes_write = int(current_gbytes_write) / 1e9
            writes.append(current_gbytes_write)

            gflops_rate = flops[-1] / (times[-1] - times[0])
            greads_rate = reads[-1] / (times[-1] - times[0])
            gwrites_rate = writes[-1] / (times[-1] - times[0])
            b = XXT_sharded.shard_sizes[0]
            current_objects_read = (current_gbytes_read * 1e9) / (b * b * 8)
            current_objects_write = (current_gbytes_write * 1e9) / (b * b * 8)
            read_objects.append(current_objects_read)
            write_objects.append(current_objects_write)
            read_rate = read_objects[-1] / (times[-1] - times[0])
            write_rate = write_objects[-1] / (times[-1] - times[0])

            avg_workers = np.mean(up_workers_counts)
            smooth_len = 10
            if (len(flops) > smooth_len + 5):
                gflops_rate_5_min_window = (flops[-1] - flops[-smooth_len]) / (
                    times[-1] - times[-smooth_len])
                gread_rate_5_min_window = (reads[-1] - reads[-smooth_len]) / (
                    times[-1] - times[-smooth_len])
                gwrite_rate_5_min_window = (
                    writes[-1] - writes[-smooth_len]) / (times[-1] -
                                                         times[-smooth_len])
                read_rate_5_min_window = (read_objects[-1] -
                                          read_objects[-smooth_len]) / (
                                              times[-1] - times[-smooth_len])
                write_rate_5_min_window = (write_objects[-1] -
                                           write_objects[-smooth_len]) / (
                                               times[-1] - times[-smooth_len])
                workers_5_min_window = np.mean(up_workers_counts[-smooth_len:])
            else:
                gflops_rate_5_min_window = "N/A"
                gread_rate_5_min_window = "N/A"
                gwrite_rate_5_min_window = "N/A"
                workers_5_min_window = "N/A"
                read_rate_5_min_window = "N/A"
                write_rate_5_min_window = "N/A"

            read_timeouts = int(REDIS_CLIENT.get("s3.timeouts.read"))
            write_timeouts = int(REDIS_CLIENT.get("s3.timeouts.write"))
            redis_timeouts = int(REDIS_CLIENT.get("redis.timeouts"))
            all_read_timeouts.append(read_timeouts)
            all_write_timeouts.append(write_timeouts)
            all_redis_timeouts.append(redis_timeouts)
            read_timeouts_fraction = read_timeouts / current_objects_read
            write_timeouts_fraction = write_timeouts / current_objects_write
            print("=======================================")
            print("Max PC is {0}".format(max_pc))
            print("Waiting: {0}, Currently Processing: {1}".format(
                waiting, running))
            print("{2}: Up Workers: {0}, Busy Workers: {1}".format(
                up_workers, busy_workers, curr_time))
            print(
                "{0}: Total GFLOPS {1}, Total GBytes Read {2}, Total GBytes Write {3}"
                .format(curr_time, current_gflops, current_gbytes_read,
                        current_gbytes_write))
            print(
                "{0}: Average GFLOPS rate {1}, Average GBytes Read rate {2}, Average GBytes Write  rate {3}, Average Worker Count {4}"
                .format(curr_time, gflops_rate, greads_rate, gwrites_rate,
                        avg_workers))
            print("{0}: Average read txns/s {1}, Average write txns/s {2}".
                  format(curr_time, read_rate, write_rate))
            print(
                "{0}: smoothed GFLOPS rate {1}, smoothed GBytes Read rate {2}, smoothed GBytes Write  rate {3}, smoothed Worker Count {4}"
                .format(curr_time, gflops_rate_5_min_window,
                        gread_rate_5_min_window, gwrite_rate_5_min_window,
                        workers_5_min_window))
            print("{0}: smoothed read txns/s {1}, smoothed write txns/s {2}".
                  format(curr_time, read_rate_5_min_window,
                         write_rate_5_min_window))
            print(
                "{0}: Read timeouts: {1}, Write timeouts: {2}, Redis timeouts: {3}  "
                .format(curr_time, read_timeouts, write_timeouts,
                        redis_timeouts))
            print(
                "{0}: Read timeouts fraction: {1}, Write timeouts fraction: {2}"
                .format(curr_time, read_timeouts_fraction,
                        write_timeouts_fraction))
            print("=======================================")

            time_since_launch = time.time() - last_run_time
            if (autoscale_policy == "dynamic"):
                if (time_since_launch > launch_granularity and
                        up_workers < np.ceil(waiting * 0.5 / pipeline_width)
                        and up_workers < max_cores):
                    cores_to_launch = int(
                        min(
                            np.ceil(waiting / pipeline_width) - up_workers,
                            max_cores - up_workers))
                    logger.info(
                        "launching {0} new tasks....".format(cores_to_launch))
                    new_future_futures = invoker.submit(
                        lambda: pwex.map(lambda x: job_runner.lambdapack_run(
                            program,
                            pipeline_width=pipeline_width,
                            cache_size=cache_size,
                            timeout=timeout),
                                         range(cores_to_launch),
                                         extra_env=extra_env))
                    last_run_time = time.time()
                    # check if we OOM-erred
                    # [x.result() for x in all_futures]
                    all_futures.extend(new_future_futures)
            elif (autoscale_policy == "constant_timeout"):
                if (time_since_launch > (0.85 * timeout)):
                    cores_to_launch = max_cores
                    logger.info(
                        "launching {0} new tasks....".format(cores_to_launch))
                    new_future_futures = invoker.submit(
                        lambda: pwex.map(lambda x: job_runner.lambdapack_run(
                            program,
                            pipeline_width=pipeline_width,
                            cache_size=cache_size,
                            timeout=timeout),
                                         range(cores_to_launch),
                                         extra_env=extra_env))
                    last_run_time = time.time()
                    # check if we OOM-erred
                    # [x.result() for x in all_futures]
                    all_futures.append(new_future_futures)
            else:
                raise Exception("unknown autoscale policy")
            exp["time_steps"] += 1
        if (verify):
            L_sharded_local = L_sharded.numpy()
            print("max diff", np.max(np.abs(L_sharded_local - L)))
    except KeyboardInterrupt:
        exp["failed"] = True
        program.stop()
        pass
    except Exception as e:
        traceback.print_exc()
        exp["failed"] = True
        program.stop()
        raise
        pass
    print(program.program_status())
    exp["all_futures"] = all_futures
    exp_bytes = dill.dumps(exp)
    client = boto3.client('s3')
    client.put_object(Key="lambdapack/{0}/runtime.pickle".format(program.hash),
                      Body=exp_bytes,
                      Bucket=program.bucket)
    print("=======================")
    print("=======================")
    print("Execution Summary:")
    print("Executed Program ID: {0}".format(program.hash))
    print("Program Success: {0}".format((not exp["failed"])))
    print("Problem Size: {0}".format(exp["problem_size"]))
    print("Shard Size: {0}".format(exp["shard_size"]))
    print("Total Execution time: {0}".format(times[-1] - times[0]))
    print("Average Flop Rate (GFlop/s): {0}".format(exp["flops"][-1] /
                                                    (times[-1] - times[0])))
    with open("/tmp/last_run", "w+") as f:
        f.write(program.hash)
Ejemplo n.º 6
0
 def test_single_shard_index_put(self):
     X = np.random.randn(128, 128)
     X_sharded = BigMatrix("test_1", shape=X.shape, shard_sizes=X.shape)
     X_sharded.submatrix(0, 0).put_block(X)
     assert (np.all(X_sharded.numpy() == X))