Ejemplo n.º 1
0
def test_Ex9_intersect():

    # Two paths A and B are given by two pairs of positions:
    # Enter elements as lat/long in deg:
    n_EA1_E = lat_lon2n_E(rad(10), rad(20))
    n_EA2_E = lat_lon2n_E(rad(30), rad(40))
    n_EB1_E = lat_lon2n_E(rad(50), rad(60))
    n_EB2_E = lat_lon2n_E(rad(70), rad(80))

    # Find the intersection between the two paths, n_EC_E:
    n_EC_E_tmp = unit(
        np.cross(np.cross(n_EA1_E, n_EA2_E, axis=0),
                 np.cross(n_EB1_E, n_EB2_E, axis=0),
                 axis=0))

    # n_EC_E_tmp is one of two solutions, the other is -n_EC_E_tmp. Select
    # the one that is closet to n_EA1_E, by selecting sign from the dot
    # product between n_EC_E_tmp and n_EA1_E:
    n_EC_E = np.sign(np.dot(n_EC_E_tmp.T, n_EA1_E)) * n_EC_E_tmp

    # When displaying the resulting position for humans, it is more
    # convenient to see lat, long:
    lat_EC, long_EC = n_E2lat_lon(n_EC_E)
    msg = 'Ex9, Intersection: lat, long = {} {} deg'
    print(msg.format(deg(lat_EC), deg(long_EC)))
    assert_allclose(deg(lat_EC), 40.31864307)
    assert_allclose(deg(long_EC), 55.90186788)
Ejemplo n.º 2
0
def test_Ex8_position_A_and_azimuth_and_distance_to_B():

    # Position A is given as n_EA_E:
    # Enter elements as lat/long in deg:
    lat, lon = rad(80), rad(-90)

    n_EA_E = lat_lon2n_E(lat, lon)

    # The initial azimuth and great circle distance (s_AB), and Earth
    # radius (r_Earth) are also given:
    azimuth = rad(200)
    s_AB = 1000  # m
    r_Earth = 6371e3  # m, mean Earth radius

    # Find the destination point B, as n_EB_E ("The direct/first geodetic
    # problem" for a sphere)

    # SOLUTION:
    # Step1: Convert distance in meter into distance in [rad]:
    distance_rad = s_AB / r_Earth
    # Step2: Find n_EB_E:
    n_EB_E = n_EA_E_distance_and_azimuth2n_EB_E(n_EA_E, distance_rad, azimuth)

    # When displaying the resulting position for humans, it is more
    # convenient to see lat, long:
    lat_EB, long_EB = n_E2lat_lon(n_EB_E)
    print('Ex8, Destination: lat, long = {0} {1} deg'.format(
        deg(lat_EB), deg(long_EB)))

    assert_allclose(deg(lat_EB), 79.99154867)
    assert_allclose(deg(long_EB), -90.01769837)
    azimuth1 = n_EA_E_and_n_EB_E2azimuth(n_EA_E, n_EB_E, a=r_Earth, f=0)
    assert_allclose(azimuth, azimuth1 + 2 * np.pi)
Ejemplo n.º 3
0
def test_Ex6_interpolated_position():

    # Position B at time t0 and t2 is given as n_EB_E_t0 and n_EB_E_t1:
    # Enter elements as lat/long in deg:
    n_EB_E_t0 = lat_lon2n_E(rad(89), rad(0))
    n_EB_E_t1 = lat_lon2n_E(rad(89), rad(180))

    # The times are given as:
    t0 = 10
    t1 = 20
    ti = 16  # time of interpolation

    # Find the interpolated position at time ti, n_EB_E_ti

    # SOLUTION:
    # Using standard interpolation:
    n_EB_E_ti = unit(n_EB_E_t0 + (ti - t0) * (n_EB_E_t1 - n_EB_E_t0) /
                     (t1 - t0))

    # When displaying the resulting position for humans, it is more
    # convenient to see lat, long:
    lat_EB_ti, long_EB_ti = n_E2lat_lon(n_EB_E_ti)
    msg = 'Ex6, Interpolated position: lat, long = {} {} deg'
    print(msg.format(deg(lat_EB_ti), deg(long_EB_ti)))

    assert_allclose(deg(lat_EB_ti), 89.7999805)
    assert_allclose(deg(long_EB_ti), 180.)
Ejemplo n.º 4
0
def test_n_EA_E_distance_and_azimuth2n_EB_E():
    a = [[1.0, 1.0], [0.0, 0.0],
         [0.0, 0.0]]  # lat = [0, 0] and lon = [0, 0] degrees
    distance_rad = np.pi / 2
    azimuth = np.r_[np.pi / 2, 0]
    b = n_EA_E_distance_and_azimuth2n_EB_E(a, distance_rad, azimuth)
    print(deg(*n_E2lat_lon(a)))
    print(deg(*n_E2lat_lon(b)))
    print(b.tolist())
    assert_allclose(b, [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]
                        ])  # # lat = [0, 90] and lon = [90, 0] degrees

    aa = n_EA_E_distance_and_azimuth2n_EB_E(b, distance_rad, azimuth + np.pi)
    print(aa.tolist())
    assert_allclose(aa, a)
Ejemplo n.º 5
0
def test_Ex1_A_and_B_to_delta_in_frame_N():

    # Positions A and B are given in (decimal) degrees and depths:
    lat_EA, lon_EA, z_EA = rad(1), rad(2), 3
    lat_EB, lon_EB, z_EB = rad(4), rad(5), 6

    # Find the exact vector between the two positions, given in meters
    # north, east, and down, i.e. find p_AB_N.

    # SOLUTION:
    # Step1: Convert to n-vectors (rad() converts to radians):
    n_EA_E = lat_lon2n_E(lat_EA, lon_EA)
    n_EB_E = lat_lon2n_E(lat_EB, lon_EB)

    # Step2: Find p_AB_E (delta decomposed in E).
    # WGS-84 ellipsoid is default:
    p_AB_E = n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)

    # Step3: Find R_EN for position A:
    R_EN = n_E2R_EN(n_EA_E)

    # Step4: Find p_AB_N
    p_AB_N = np.dot(R_EN.T, p_AB_E)
    # (Note the transpose of R_EN: The "closest-rule" says that when
    # decomposing, the frame in the subscript of the rotation matrix that
    # is closest to the vector, should equal the frame where the vector is
    # decomposed. Thus the calculation np.dot(R_NE, p_AB_E) is correct,
    # since the vector is decomposed in E, and E is closest to the vector.
    # In the example we only had R_EN, and thus we must transpose it:
    # R_EN'=R_NE)

    # Step5: Also find the direction (azimuth) to B, relative to north:
    azimuth = np.arctan2(p_AB_N[1], p_AB_N[0])
    # positive angle about down-axis

    print('Ex1, delta north, east, down = {0}, {1}, {2}'.format(
        p_AB_N[0], p_AB_N[1], p_AB_N[2]))
    print('Ex1, azimuth = {0} deg'.format(deg(azimuth)))

    assert_allclose(p_AB_N[0], 331730.23478089)
    assert_allclose(p_AB_N[1], 332997.87498927)
    assert_allclose(p_AB_N[2], 17404.27136194)
    assert_allclose(deg(azimuth), 45.10926324)
Ejemplo n.º 6
0
def test_Ex3_ECEF_vector_to_geodetic_latitude():

    # Position B is given as p_EB_E ("ECEF-vector")

    p_EB_E = 6371e3 * np.vstack((0.9, -1, 1.1))  # m

    # Find position B as geodetic latitude, longitude and height

    # SOLUTION:
    # Find n-vector from the p-vector:
    n_EB_E, z_EB = p_EB_E2n_EB_E(p_EB_E)

    # Convert to lat, long and height:
    lat_EB, long_EB = n_E2lat_lon(n_EB_E)
    h_EB = -z_EB
    msg = 'Ex3, Pos B: lat, long = {} {} deg, height = {} m'
    print(msg.format(deg(lat_EB), deg(long_EB), h_EB))

    assert_allclose(deg(lat_EB), 39.37874867)
    assert_allclose(deg(long_EB), -48.0127875)
    assert_allclose(h_EB, 4702059.83429485)
Ejemplo n.º 7
0
def test_Ex2_B_and_delta_in_frame_B_to_C_in_frame_E():
    # delta vector from B to C, decomposed in B is given:
    p_BC_B = np.r_[3000, 2000, 100].reshape((-1, 1))  # pylint: disable=too-many-function-args

    # Position and orientation of B is given:
    n_EB_E = unit([[1], [2], [3]])  # unit to get unit length of vector
    z_EB = -400
    R_NB = zyx2R(rad(10), rad(20), rad(30))
    # the three angles are yaw, pitch, and roll

    # A custom reference ellipsoid is given (replacing WGS-84):
    a, f = 6378135, 1.0 / 298.26  # (WGS-72)

    # Find the position of C.
    # SOLUTION:
    # Step1: Find R_EN:
    R_EN = n_E2R_EN(n_EB_E)

    # Step2: Find R_EB, from R_EN and R_NB:
    R_EB = np.dot(R_EN, R_NB)  # Note: closest frames cancel

    # Step3: Decompose the delta vector in E:
    p_BC_E = np.dot(R_EB, p_BC_B)
    # no transpose of R_EB, since the vector is in B

    # Step4: Find the position of C, using the functions that goes from one
    # position and a delta, to a new position:
    n_EC_E, z_EC = n_EA_E_and_p_AB_E2n_EB_E(n_EB_E, p_BC_E, z_EB, a, f)

    # When displaying the resulting position for humans, it is more
    # convenient to see lat, long:
    lat_EC, long_EC = n_E2lat_lon(n_EC_E)
    # Here we also assume that the user wants output height (= - depth):
    msg = 'Ex2, Pos C: lat, long = {},{} deg,  height = {} m'
    print(msg.format(deg(lat_EC), deg(long_EC), -z_EC))

    assert_allclose(deg(lat_EC), 53.32637826)
    assert_allclose(deg(long_EC), 63.46812344)
    assert_allclose(z_EC, -406.00719607)
Ejemplo n.º 8
0
def test_rad_and_deg(values):
    radians = rad(values)
    assert_allclose(deg(radians), values)