Ejemplo n.º 1
0
    def define_graph(self):
        inputs, bboxes, labels, polygons, vertices = fn.readers.coco(
                                            file_root=self.file_root,
                                            annotations_file=self.annotation_file,
                                            skip_empty=True,
                                            shard_id=self.share_id,
                                            num_shards=self.num_gpus,
                                            ratio=True,
                                            ltrb=True,
                                            polygon_masks = True,
                                            random_shuffle=self.random_shuffle,
                                            shuffle_after_epoch=self.shuffle_after_epoch,
                                            name="Reader")

        input_shape = fn.slice(fn.cast(fn.peek_image_shape(inputs), dtype=types.INT32), 0, 2, axes=[0])
        h = fn.slice(input_shape, 0, 1, axes = [0], dtype=types.FLOAT)
        w = fn.slice(input_shape, 1, 1, axes = [0], dtype=types.FLOAT)
        short_side = math.min(w, h)        
        scale = fn.random.uniform(range=[0.3, 1.])
        crop_side = fn.cast(math.ceil(scale * short_side), dtype=types.INT32)    
        crop_shape = fn.cat(crop_side, crop_side)
        anchor_rel, shape_rel, bboxes, labels, bbox_indices = fn.random_bbox_crop(
                        bboxes,
                        labels,
                        input_shape=input_shape,
                        crop_shape=crop_shape,
                        shape_layout="HW",
                        thresholds=[0.],            # No minimum intersection-over-union, for demo purposes
                        allow_no_crop=False,        # No-crop is disallowed, for demo purposes 
                        seed=-1,                    # Fixed random seed for deterministic results
                        bbox_layout="xyXY",         # left, top, right, back
                        output_bbox_indices=True,   # Output indices of the filtered bounding boxes
                        total_num_attempts=1024,
        )
        polygons, vertices = fn.segmentation.select_masks(
            bbox_indices, polygons, vertices
        )
        images = fn.decoders.image_slice(
            inputs, anchor_rel, shape_rel, normalized_anchor=False, normalized_shape=False, device='mixed'
        )
        images = fn.color_space_conversion(images, image_type=types.RGB, output_type=types.BGR)
        MT_1_vertices = fn.transforms.crop(
            to_start=(0.0, 0.0), to_end=fn.cat(w, h)
        )    
        MT_2_vertices = fn.transforms.crop(
            from_start=anchor_rel, from_end=(anchor_rel + shape_rel),
            to_start=(0.0, 0.0), to_end=(1., 1.)
        )    
        vertices = fn.coord_transform(fn.coord_transform(vertices, MT=MT_1_vertices), MT=MT_2_vertices)    
        targets = fn.cat( bboxes, fn.reshape(vertices, shape=[-1, 10]), axis=1)

        interp_methods = [types.INTERP_LINEAR, types.INTERP_CUBIC, types.INTERP_LANCZOS3, types.INTERP_GAUSSIAN, types.INTERP_NN, types.INTERP_TRIANGULAR]
        interp_method = fn.random.uniform(values=[int(x) for x in interp_methods], dtype=types.INT32)
        interp_method = fn.reinterpret(interp_method, dtype=types.INTERP_TYPE)
        images = fn.resize(images, dtype=types.FLOAT, size=self.input_dim, interp_type=interp_method)

        labels = labels.gpu()
        targets = targets.gpu()
        return (images, targets, labels)
def check_random_mask_pixel(ndim=2, batch_size=3,
                            min_extent=20, max_extent=50):
    pipe = dali.pipeline.Pipeline(batch_size=batch_size, num_threads=4, device_id=0, seed=1234)
    with pipe:
        # Input mask
        in_shape_dims = [fn.cast(fn.random.uniform(range=(min_extent, max_extent + 1)),
                                 dtype=types.INT32) for _ in range(ndim)]
        in_shape = fn.stack(*in_shape_dims)
        in_mask = fn.cast(fn.random.uniform(range=(0, 2), shape=in_shape), dtype=types.INT32)

        #  > 0
        fg_pixel1 = fn.segmentation.random_mask_pixel(in_mask, foreground=1)
        #  >= 0.99
        fg_pixel2 = fn.segmentation.random_mask_pixel(in_mask, foreground=1, threshold=0.99)
        #  == 2
        fg_pixel3 = fn.segmentation.random_mask_pixel(in_mask, foreground=1, value=2)

        rnd_pixel = fn.segmentation.random_mask_pixel(in_mask, foreground=0)

        coin_flip = fn.random.coin_flip(probability=0.7)
        fg_biased = fn.segmentation.random_mask_pixel(in_mask, foreground=coin_flip)

        # Demo purposes: Taking a random pixel and produce a valid anchor to feed slice
        # We want to force the center adjustment, thus the large crop shape
        crop_shape = in_shape - 2
        anchor = fn.cast(fg_pixel1, dtype=types.INT32) - crop_shape // 2
        anchor = math.min(math.max(0, anchor), in_shape - crop_shape)
        out_mask = fn.slice(in_mask, anchor, crop_shape, axes=tuple(range(ndim)))

    pipe.set_outputs(in_mask, fg_pixel1, fg_pixel2, fg_pixel3, rnd_pixel, coin_flip, fg_biased,
                     anchor, crop_shape, out_mask)
    pipe.build()
    for iter in range(3):
        outputs = pipe.run()
        for idx in range(batch_size):
            in_mask = outputs[0].at(idx)
            fg_pixel1 = outputs[1].at(idx).tolist()
            fg_pixel2 = outputs[2].at(idx).tolist()
            fg_pixel3 = outputs[3].at(idx).tolist()
            rnd_pixel = outputs[4].at(idx).tolist()
            coin_flip = outputs[5].at(idx).tolist()
            fg_biased = outputs[6].at(idx).tolist()
            anchor = outputs[7].at(idx).tolist()
            crop_shape = outputs[8].at(idx).tolist()
            out_mask = outputs[9].at(idx)

            assert in_mask[tuple(fg_pixel1)] > 0
            assert in_mask[tuple(fg_pixel2)] > 0.99
            assert in_mask[tuple(fg_pixel3)] == 2
            assert in_mask[tuple(fg_biased)] > 0 or not coin_flip

            for d in range(ndim):
                assert 0 <= anchor[d] and anchor[d] + crop_shape[d] <= in_mask.shape[d]
            assert out_mask.shape == tuple(crop_shape)
Ejemplo n.º 3
0
def check_pad_per_sample_shapes_and_alignment(device='cpu',
                                              batch_size=3,
                                              ndim=2,
                                              num_iter=3):
    pipe = Pipeline(batch_size=batch_size,
                    num_threads=3,
                    device_id=0,
                    seed=1234)
    axes = (0, 1)
    with pipe:
        in_shape = fn.cast(fn.random.uniform(range=(10, 20), shape=(ndim, )),
                           dtype=types.INT32)
        in_data = fn.random.uniform(range=(0., 1.), shape=in_shape)
        if device == 'gpu':
            in_data = in_data.gpu()
        req_shape = fn.cast(fn.random.uniform(range=(21, 30), shape=(ndim, )),
                            dtype=types.INT32)
        req_align = fn.cast(fn.random.uniform(range=(3, 5), shape=(ndim, )),
                            dtype=types.INT32)
        out_pad_shape = fn.pad(in_data, axes=axes, align=None, shape=req_shape)
        out_pad_align = fn.pad(in_data, axes=axes, align=req_align, shape=None)
        out_pad_both = fn.pad(in_data,
                              axes=axes,
                              align=req_align,
                              shape=req_shape)
        pipe.set_outputs(in_shape, in_data, req_shape, req_align,
                         out_pad_shape, out_pad_align, out_pad_both)
    pipe.build()
    for _ in range(num_iter):
        outs = [
            out.as_cpu() if isinstance(out, TensorListGPU) else out
            for out in pipe.run()
        ]
        for i in range(batch_size):
            in_shape, in_data, req_shape, req_align, out_pad_shape, out_pad_align, out_pad_both = \
                [outs[out_idx].at(i) for out_idx in range(len(outs))]
            assert (in_shape == in_data.shape).all()
            # Pad to explicit shape
            assert (out_pad_shape.shape >= in_shape).all()
            assert (req_shape == out_pad_shape.shape).all()

            # Alignment only
            assert (out_pad_align.shape >= in_shape).all()
            assert is_aligned(out_pad_align.shape, req_align, axes)

            # Explicit shape + alignment
            assert (out_pad_both.shape >= in_shape).all()
            assert (req_shape <= out_pad_both.shape).all()
            assert is_aligned(out_pad_both.shape, req_align, axes)
Ejemplo n.º 4
0
def setup_dali(
    image_file='/mnt/data/DATASETS/samples/images/image_110.jpg',
    image_dim=[800, 1600],
    batch_size=1,
    num_threads=4,
    device='mixed',
    device_id=0,
    output_dir='./out/',
):

    os.makedirs(os.path.dirname(output_dir), exist_ok=True)

    pipeline = dali.pipeline.Pipeline(batch_size=batch_size,
                                      num_threads=num_threads,
                                      device_id=device_id)

    with pipeline:
        data, _ = fn.file_reader(files=[image_file])
        # image preprocess
        images = fn.image_decoder(data, device=device)
        images = fn.resize(images,
                           size=image_dim,
                           mode="not_larger",
                           max_size=image_dim)
        images = fn.pad(images,
                        fill_value=0,
                        shape=[image_dim[0], image_dim[1], 1])
        images = fn.transpose(images, perm=[2, 0, 1])
        images = fn.cast(images, dtype=dali.types.FLOAT)
        images = images / 255.
        # input shape
        input_shape = np.float32((image_dim[0], image_dim[1], 1))
        # original shape
        shapes = fn.peek_image_shape(data)
        shapes = fn.cast(shapes, dtype=dali.types.FLOAT)
        # gather outputs
        out = [images, input_shape, shapes]
        pipeline.set_outputs(*out)

    pipeline.build()
    output = pipeline.run()
    img = output[0].at(0) if device == 'cpu' else output[0].as_cpu().at(0)

    img = img.transpose(1, 2, 0)  # HWC
    img = img[:, :, ::-1]  # BGR
    print(img)
    quit()
    cv2.imwrite(os.path.join(output_dir, 'dali_image.jpg'), img)
Ejemplo n.º 5
0
def many_input_pipeline(def_for_dataset, device, sources, input_names,
                        batches):
    """ Pipeline accepting multiple inputs via external source

    Parameters
    ----------
    def_for_dataset : bool
         True if this pipeline will be converted to TF Dataset
    device : str
        device that the Dataset will be placed ("cpu" or "gpu")
    sources : list of callables
        callbacks for the external sources in baseline pipeline otherwise None
    input_names : list of str
        Names of inputs placeholder for TF
    """
    inputs = []
    if def_for_dataset:
        for input_name, batch in zip(input_names, batches):
            if batch == "dataset":
                # Special value used in tests, reroute it to the default
                batch = None
            input = fn.external_source(name=input_name, batch=batch)
            input = input if device == 'cpu' else input.gpu()
            inputs.append(input)
    else:
        for source in sources:
            input = fn.external_source(source=source, batch=False)
            input = input if device == 'cpu' else input.gpu()
            inputs.append(input)
    processed = []
    for input in inputs:
        processed.append(fn.cast(input + 10, dtype=dali.types.INT32))
    results = fn.pad(inputs + processed)
    return tuple(results)
Ejemplo n.º 6
0
def check_per_sample_gaussian_blur(batch_size,
                                   sigma_dim,
                                   window_size_dim,
                                   shape,
                                   layout,
                                   axes,
                                   op_type="cpu"):
    pipe = Pipeline(batch_size=batch_size, num_threads=4, device_id=0)
    data = RandomlyShapedDataIterator(batch_size, max_shape=shape)
    with pipe:
        if sigma_dim is not None:
            sigma = fn.random.uniform(range=[0.5, 3], shape=[sigma_dim])
            sigma_arg = sigma
        else:
            # placeholder, so we can return something
            sigma = fn.random.coin_flip(probability=0)
            sigma_arg = None

        if window_size_dim is not None:
            window_radius = fn.random.uniform(range=[5, 10],
                                              shape=[window_size_dim])
            window_size = fn.cast(window_radius, dtype=types.INT32) * 2 + 1
            window_arg = window_size
        else:
            window_size = fn.random.coin_flip(probability=0)
            window_arg = None

        input = fn.external_source(data, layout=layout)
        if op_type == "gpu":
            input = input.gpu()
        blurred = fn.gaussian_blur(input,
                                   device=op_type,
                                   sigma=sigma_arg,
                                   window_size=window_arg)
        pipe.set_outputs(blurred, input, sigma, window_size)
    pipe.build()

    for _ in range(test_iters):
        result, input, sigma, window_size = pipe.run()
        if op_type == "gpu":
            result = result.as_cpu()
            input = input.as_cpu()
        input = to_batch(input, batch_size)
        sigma = to_batch(sigma, batch_size)
        window_size = to_batch(window_size, batch_size)
        baseline = []
        for i in range(batch_size):
            sigma_arg = sigma[i] if sigma is not None else None
            window_arg = window_size[i] if window_size_dim is not None else None
            skip_axes = count_skip_axes(layout)
            baseline.append(
                gaussian_baseline(input[i], sigma_arg, window_arg, axes,
                                  skip_axes))
        check_batch(result,
                    baseline,
                    batch_size,
                    max_allowed_error=1,
                    expected_layout=layout)
Ejemplo n.º 7
0
    def define_graph(self):
        inputs, labels = self.input(name="Reader")

        images = self.decode(inputs)
        if self.prime_size:
            images = fn.resize(images, resize_x=101, resize_y=43)
        images = fn.cast(images, dtype=self.dtype)
        images = self.water(images)
        return images
Ejemplo n.º 8
0
 def make_pipe():
     encoded, _ = fn.readers.caffe(path=caffe_db_folder, random_shuffle=False)
     image = fn.decoders.image(encoded, device="cpu", output_type=types.RGB)
     if device == 'gpu':
         image = image.gpu()
     image = fn.cast(image, dtype=dtype)
     sliced1 = fn.slice(image, 0, 3, axes=(2,))
     sliced2 = fn.slice(image, rel_start=(0, 0, 0), rel_end=(1, 1, 1), axis_names="HWC")
     return image, sliced1, sliced2
Ejemplo n.º 9
0
def get_random_pipeline(batch_size):
  pipe = Pipeline(batch_size, 4, None)
  with pipe:
    input, _ = fn.readers.file(file_root=img_dir)
    decoded = fn.image_decoder(input, device='cpu', output_type=types.RGB)
    tile = fn.cast(fn.uniform(range=(50, 200), shape=[1]), dtype=types.INT32)
    ratio = fn.uniform(range=(0.3, 0.7), shape=[1])
    angle = fn.uniform(range=(-math.pi, math.pi), shape=[1])
    grided = fn.grid_mask(decoded, device='cpu', tile=tile, ratio=ratio, angle=angle)
    pipe.set_outputs(grided, decoded, tile, ratio, angle)
  return pipe
Ejemplo n.º 10
0
    def define_graph(self):
        inputs, labels = self.input(name="Reader")

        images = self.decode(inputs)
        if self.device == 'gpu':
            images = images.gpu()
        if self.prime_size:
            images = fn.resize(images, resize_x=101, resize_y=43)
        mask = fn.random.coin_flip(seed=42) if self.do_mask else None
        images = fn.cast(images, dtype=self.dtype)
        images = self.water(images, mask=mask)
        return images
Ejemplo n.º 11
0
def create_ref_pipe(channel_first, seq_len, interp, dtype, w, h, batch_size=2):
    pipe = dali.pipeline.Pipeline(batch_size, 1, 0, 0, exec_async=False, exec_pipelined=False)
    with pipe:
        layout = "FCHW" if channel_first else "FHWC"
        ext = fn.external_source(GetSequences(channel_first, seq_len, batch_size), layout=layout)
        pil_resized = fn.python_function(ext, function=resize_PIL(channel_first, interp, w, h),
                                         batch_processing=False)
        if dtype is not None:  # unfortunately, PIL can't quite handle that
            pil_resized = fn.cast(pil_resized, dtype=dtype)
        pil_resized = fn.reshape(pil_resized, layout=layout)
        pipe.set_outputs(pil_resized)
    return pipe
Ejemplo n.º 12
0
def setup_dali(
    input_name='DALI_INPUT_0',
    image_dim=[896, 1536],
    batch_size=1,
    num_threads=4,
    device='cpu',
    device_id=0,
    output_dir='./out/',
):

    pipeline = dali.pipeline.Pipeline(batch_size=batch_size,
                                      num_threads=num_threads,
                                      device_id=device_id)

    with pipeline:
        data = fn.external_source(name=input_name, device="cpu")
        # image preprocess
        images = fn.image_decoder(data, device=device)
        images = fn.resize(images,
                           size=image_dim,
                           mode="not_larger",
                           max_size=image_dim)
        images = fn.pad(images,
                        fill_value=0,
                        shape=[image_dim[0], image_dim[1], 1])
        images = fn.transpose(images, perm=[2, 0, 1])
        images = fn.cast(images, dtype=dali.types.FLOAT)
        images = images / 255.
        # input shape
        input_shape = np.float32((image_dim[0], image_dim[1], 1))
        # original shape
        shapes = fn.peek_image_shape(data)
        shapes = fn.cast(shapes, dtype=dali.types.FLOAT)
        # gather outputs
        out = [images, input_shape, shapes]
        pipeline.set_outputs(*out)

    os.makedirs(os.path.dirname(output_dir), exist_ok=True)
    pipeline.serialize(filename=os.path.join(output_dir, 'model.dali'))
Ejemplo n.º 13
0
Archivo: main.py Proyecto: xvdp/DALI
def create_dali_pipeline(batch_size, num_threads, device_id, data_dir, crop, size,
                         shard_id, num_shards, dali_cpu=False, is_training=True):
    pipeline = Pipeline(batch_size, num_threads, device_id, seed=12 + device_id)
    with pipeline:
        images, labels = fn.readers.file(file_root=data_dir,
                                         shard_id=shard_id,
                                         num_shards=num_shards,
                                         random_shuffle=is_training,
                                         pad_last_batch=True,
                                         name="Reader")
        dali_device = 'cpu' if dali_cpu else 'gpu'
        decoder_device = 'cpu' if dali_cpu else 'mixed'
        device_memory_padding = 211025920 if decoder_device == 'mixed' else 0
        host_memory_padding = 140544512 if decoder_device == 'mixed' else 0
        if is_training:
            images = fn.image_decoder_random_crop(images,
                                                  device=decoder_device, output_type=types.RGB,
                                                  device_memory_padding=device_memory_padding,
                                                  host_memory_padding=host_memory_padding,
                                                  random_aspect_ratio=[0.8, 1.25],
                                                  random_area=[0.1, 1.0],
                                                  num_attempts=100)
            images = fn.resize(images,
                               device=dali_device,
                               resize_x=crop,
                               resize_y=crop,
                               interp_type=types.INTERP_TRIANGULAR)
            mirror = fn.random.coin_flip(probability=0.5)
        else:
            images = fn.image_decoder(images,
                                      device=decoder_device,
                                      output_type=types.RGB)
            images = fn.resize(images,
                               device=dali_device,
                               size=size,
                               mode="not_smaller",
                               interp_type=types.INTERP_TRIANGULAR)
            mirror = False

        images = fn.crop_mirror_normalize(images.gpu(),
                                          dtype=types.FLOAT,
                                          output_layout="CHW",
                                          crop=(crop, crop),
                                          mean=[0.485 * 255,0.456 * 255,0.406 * 255],
                                          std=[0.229 * 255,0.224 * 255,0.225 * 255],
                                          mirror=mirror)
        labels = labels.gpu()
        labels = fn.cast(labels, dtype=types.INT64)
        pipeline.set_outputs(images, labels)
    return pipeline
Ejemplo n.º 14
0
def create_dali_pipe(channel_first, seq_len, interp, dtype, w, h, batch_size=2):
    pipe = dali.pipeline.Pipeline(batch_size, 1, 0, 0)
    with pipe:
        layout = "FCHW" if channel_first else "FHWC"
        ext = fn.external_source(GetSequences(channel_first, seq_len, batch_size), layout=layout)
        resize_cpu_out = fn.resize(ext, resize_x=w, resize_y=h, interp_type=interp,
                                   dtype=dtype, save_attrs=True)
        resize_gpu_out = fn.resize(ext.gpu(), resize_x=w, resize_y=h, interp_type=interp,
                                   minibatch_size=4, dtype=dtype, save_attrs=True)
        dali_resized_cpu, size_cpu = resize_cpu_out
        dali_resized_gpu, size_gpu = resize_gpu_out
        # extract just HW part from the input shape
        ext_size = fn.slice(fn.cast(fn.shapes(ext), dtype=types.INT32),
                            2 if channel_first else 1, 2, axes=[0])
        pipe.set_outputs(dali_resized_cpu, dali_resized_gpu, ext_size, size_cpu, size_gpu)
    return pipe
Ejemplo n.º 15
0
def get_random_pipeline(device, batch_size):
    pipe = Pipeline(batch_size, 4, 0)
    with pipe:
        input, _ = fn.readers.file(file_root=img_dir)
        decoded = fn.decoders.image(input, device='cpu', output_type=types.RGB)
        decoded = decoded.gpu() if device == 'gpu' else decoded
        tile = fn.cast(fn.uniform(range=(50, 200)), dtype=types.INT32)
        ratio = fn.uniform(range=(0.3, 0.7))
        angle = fn.uniform(range=(-math.pi, math.pi))
        grided = fn.grid_mask(decoded,
                              device=device,
                              tile=tile,
                              ratio=ratio,
                              angle=angle)
        pipe.set_outputs(grided, decoded, tile, ratio, angle)
    return pipe
Ejemplo n.º 16
0
def get_image_pipeline(batch_size, num_threads, device, device_id=0, shard_id=0, num_shards=1,
        def_for_dataset=False):
    test_data_root = get_dali_extra_path()
    file_root = os.path.join(test_data_root, 'db', 'coco_dummy', 'images')
    annotations_file = os.path.join(
        test_data_root, 'db', 'coco_dummy', 'instances.json')

    pipe = Pipeline(batch_size, num_threads, device_id)
    with pipe:
        jpegs, _, _, image_ids = fn.readers.coco(
            file_root=file_root,
            annotations_file=annotations_file,
            shard_id=shard_id,
            num_shards=num_shards,
            ratio=False,
            image_ids=True)
        images = fn.decoders.image(
            jpegs,
            device=('mixed' if device == 'gpu' else 'cpu'),
            output_type=types.RGB)
        images = fn.resize(
            images,
            resize_x=224,
            resize_y=224,
            interp_type=types.INTERP_LINEAR)
        images = fn.crop_mirror_normalize(
            images,
            dtype=types.FLOAT,
            mean=[128., 128., 128.],
            std=[1., 1., 1.])
        if device == 'gpu':
            image_ids = image_ids.gpu()
        ids_reshaped = fn.reshape(image_ids, shape=[1, 1])
        ids_int16 = fn.cast(image_ids, dtype=types.INT16)

        pipe.set_outputs(images, ids_reshaped, ids_int16)

    shapes = (
        (batch_size, 3, 224, 224),
        (batch_size, 1, 1),
        (batch_size, 1))
    dtypes = (
        tf.float32,
        tf.int32,
        tf.int16)

    return pipe, shapes, dtypes
Ejemplo n.º 17
0
def laplacian_pipe(window_size, in_type, out_type, normalize, grayscale):
    # use OpenCV convention - window size 1 implies deriv kernel of size 3 and no smoothing
    if window_size == 1:
        window_size, smoothing_size = 3, 1
    else:
        smoothing_size = None
    imgs, _ = fn.readers.file(file_root=images_dir, shard_id=0, num_shards=1)
    output_type = types.GRAY if grayscale else types.RGB
    imgs = fn.decoders.image(imgs, device="cpu", output_type=output_type)
    if in_type != types.UINT8:
        imgs = fn.cast(imgs, dtype=in_type)
    edges = fn.laplacian(imgs,
                         window_size=window_size,
                         smoothing_size=smoothing_size,
                         normalized_kernel=normalize,
                         dtype=out_type)
    return edges, imgs
Ejemplo n.º 18
0
def ExternalSourcePipeline(params, num_threads, device_id, external_date,
                           seed):
    pipe = Pipeline(params.batch_size, num_threads, device_id, seed=seed)
    with pipe:
        jpegs, labels = fn.external_source(source=external_date, num_outputs=2)
        images = fn.image_decoder(jpegs, device="mixed", output_type=types.RGB)
        images = fn.resize(images, resize_x=224, resize_y=224)
        images = fn.cast(images, dtype=types.UINT8) / 255
        images = fn.normalize(images,
                              axes=[0, 1],
                              mean=params.mean,
                              stddev=params.std,
                              device='gpu',
                              batch=False)
        output = fn.transpose(images, perm=[2, 0, 1], device='gpu')
        pipe.set_outputs(output, labels)
    return pipe
def pipe_gaussian_noise(mean, stddev, variable_dist_params, device=None):
    encoded, _ = fn.readers.file(file_root=images_dir)
    in_data = fn.cast(fn.decoders.image(encoded,
                                        device="cpu",
                                        output_type=types.RGB),
                      dtype=types.FLOAT)
    if device == 'gpu':
        in_data = in_data.gpu()
    mean_arg = mean
    stddev_arg = stddev
    if variable_dist_params:
        mean_arg = fn.random.uniform(range=(-50.0, 50.0))
        stddev_arg = fn.random.uniform(range=(1.0, 10.0))
    seed = 12345
    out_data1 = fn.noise.gaussian(in_data,
                                  mean=mean_arg,
                                  stddev=stddev_arg,
                                  seed=seed)
    out_data2 = in_data + fn.random.normal(
        in_data, mean=mean_arg, stddev=stddev_arg, seed=seed)
    return out_data1, out_data2
Ejemplo n.º 20
0
def create_dali_pipe(channel_first,
                     seq_len,
                     interp,
                     dtype,
                     w,
                     h,
                     batch_size=2):
    pipe = dali.pipeline.Pipeline(batch_size, 1, 0, 0)
    with pipe:
        layout = "FCHW" if channel_first else "FHWC"
        ext = fn.external_source(GetSequences(channel_first, seq_len,
                                              batch_size),
                                 layout=layout)
        resize_cpu_out = fn.resize(ext,
                                   resize_x=w,
                                   resize_y=h,
                                   interp_type=interp,
                                   dtype=dtype,
                                   save_attrs=True)
        resize_gpu_out = fn.resize(ext.gpu(),
                                   resize_x=w,
                                   resize_y=h,
                                   interp_type=interp,
                                   minibatch_size=4,
                                   dtype=dtype,
                                   save_attrs=True)
        dali_resized_cpu, size_cpu = resize_cpu_out
        dali_resized_gpu, size_gpu = resize_gpu_out
        # extract just HW part from the input shape
        shape_anchor = np.array([2 if channel_first else 1], dtype=np.float32)
        shape_shape = np.array([2], dtype=np.float32)
        ext_size = fn.slice(fn.cast(fn.shapes(ext), dtype=types.INT32),
                            types.Constant(shape_anchor, device="cpu"),
                            types.Constant(shape_shape, device="cpu"),
                            normalized_anchor=False,
                            normalized_shape=False,
                            axes=[0])
        pipe.set_outputs(dali_resized_cpu, dali_resized_gpu, ext_size,
                         size_cpu, size_gpu)
    return pipe
Ejemplo n.º 21
0
def get_pipeline(batch_size,
                 num_threads,
                 device,
                 device_id=0,
                 shard_id=0,
                 num_shards=1):
    test_data_root = os.environ['DALI_EXTRA_PATH']
    file_root = os.path.join(test_data_root, 'db', 'coco_dummy', 'images')
    annotations_file = os.path.join(test_data_root, 'db', 'coco_dummy',
                                    'instances.json')

    pipe = Pipeline(batch_size, num_threads, device_id)
    with pipe:
        jpegs, _, _, image_ids = fn.coco_reader(
            file_root=file_root,
            annotations_file=annotations_file,
            shard_id=shard_id,
            num_shards=num_shards,
            ratio=False,
            image_ids=True)
        images = fn.image_decoder(
            jpegs,
            device=('mixed' if device == 'gpu' else 'cpu'),
            output_type=types.RGB)
        images = fn.resize(images,
                           resize_x=224,
                           resize_y=224,
                           interp_type=types.INTERP_LINEAR)
        images = fn.crop_mirror_normalize(images,
                                          dtype=types.FLOAT,
                                          mean=[128., 128., 128.],
                                          std=[1., 1., 1.])
        if device == 'gpu':
            image_ids = image_ids.gpu()
        ids_reshaped = fn.reshape(image_ids, shape=[1, 1])
        ids_int16 = fn.cast(image_ids, dtype=types.INT16)

        pipe.set_outputs(images, ids_reshaped, ids_int16)

    return pipe
Ejemplo n.º 22
0
def one_input_pipeline(def_for_dataset, device, source, external_source_device,
                       no_copy, batch):
    """Pipeline accepting single input via external source

    Parameters
    ----------
    def_for_dataset : bool
         True if this pipeline will be converted to TF Dataset
    device : str
        device that the Dataset will be placed ("cpu" or "gpu")
    source : callable
        callback for the external source in baseline pipeline otherwise None
    external_source_device : str
        Device that we want the external source in TF dataset to be placed
    """

    if def_for_dataset:
        if no_copy is None:
            # If no_copy is None, we infer it automatically and we use no_copy=True when
            # the input memory is matching the external source placement,
            # so the Dataset's placement is the same as external source's device,
            # otherwise for cross-backend we use False.
            no_copy = (device == external_source_device)
        if batch == "dataset":
            # Special value used in tests, reroute it to the default
            batch = None
        input = fn.external_source(name="input_placeholder",
                                   no_copy=no_copy,
                                   device=external_source_device,
                                   batch=batch)
    else:
        input = fn.external_source(name="actual_input",
                                   source=source,
                                   batch=False,
                                   device=external_source_device)
    input = input if device == 'cpu' else input.gpu()
    processed = fn.cast(input + 10, dtype=dali.types.INT32)
    input_padded, processed_padded = fn.pad([input, processed])
    return input_padded, processed_padded
Ejemplo n.º 23
0
def check_pad_to_square(device='cpu', batch_size=3, ndim=2, num_iter=3):
    pipe = Pipeline(batch_size=batch_size,
                    num_threads=3,
                    device_id=0,
                    seed=1234)
    axes = (0, 1)
    with pipe:
        in_shape = fn.cast(fn.random.uniform(range=(10, 20), shape=(ndim, )),
                           dtype=types.INT32)
        in_data = fn.reshape(fn.random.uniform(range=(0., 1.), shape=in_shape),
                             layout="HW")
        shape = fn.shapes(in_data, dtype=types.INT32)
        h = fn.slice(shape, 0, 1, axes=[0])
        w = fn.slice(shape, 1, 1, axes=[0])
        side = math.max(h, w)
        if device == 'gpu':
            in_data = in_data.gpu()
        out_data = fn.pad(in_data,
                          axis_names="HW",
                          shape=fn.cat(side, side, axis=0))
        pipe.set_outputs(in_data, out_data)
    pipe.build()
    for _ in range(num_iter):
        outs = [
            out.as_cpu() if isinstance(out, TensorListGPU) else out
            for out in pipe.run()
        ]
        for i in range(batch_size):
            in_data, out_data = \
                [outs[out_idx].at(i) for out_idx in range(len(outs))]
            in_shape = in_data.shape
            max_side = max(in_shape)
            for s in out_data.shape:
                assert s == max_side
            np.testing.assert_equal(out_data[:in_shape[0], :in_shape[1]],
                                    in_data)
            np.testing.assert_equal(out_data[in_shape[0]:, :], 0)
            np.testing.assert_equal(out_data[:, in_shape[1]:], 0)
Ejemplo n.º 24
0
 def cast_pipe():
     inp = fn.external_source(src)
     inp_dev = inp.gpu() if device == 'gpu' else inp
     return inp, fn.cast(inp_dev, dtype=np_type_to_dali(out_dtype))
Ejemplo n.º 25
0
def build_pipes(device, dim, batch_size, channel_first, mode, interp, dtype,
                w_input, h_input, d_input, use_size_arg, use_size_input,
                use_roi):
    dali_pipe = Pipeline(batch_size=batch_size,
                         num_threads=8,
                         device_id=0,
                         seed=1234)
    with dali_pipe:
        if dim == 2:
            files, labels = dali.fn.readers.caffe(path=db_2d_folder,
                                                  random_shuffle=True)
            images_cpu = dali.fn.decoders.image(files, device="cpu")
        else:
            images_cpu = dali.fn.external_source(
                source=random_3d_loader(batch_size), layout="DHWC")

        images_hwc = images_cpu if device == "cpu" else images_cpu.gpu()

        if channel_first:
            images = dali.fn.transpose(
                images_hwc,
                perm=[3, 0, 1, 2] if dim == 3 else [2, 0, 1],
                transpose_layout=True)
        else:
            images = images_hwc

        roi_start = None
        roi_end = None
        w = None
        h = None
        d = None
        size = None

        minibatch_size = 2 if dim == 3 else 8

        if use_roi:
            # Calculate absolute RoI
            in_size = fn.slice(fn.shapes(images_cpu),
                               types.Constant(0,
                                              dtype=types.FLOAT,
                                              device="cpu"),
                               types.Constant(dim,
                                              dtype=types.FLOAT,
                                              device="cpu"),
                               axes=[0],
                               normalized_shape=False)
            roi_start = fn.random.uniform(range=(0, 0.4), shape=[dim
                                                                 ]) * in_size
            roi_end = fn.random.uniform(range=(0.6, 1.0), shape=[dim
                                                                 ]) * in_size

        size_range = (10, 200) if dim == 3 else (10, 1000)

        if use_size_arg:
            if use_size_input:
                mask = fn.cast(fn.random.uniform(range=(0.8, 1.9),
                                                 shape=[dim]),
                               dtype=types.INT32)
                size = fn.random.uniform(range=size_range, shape=[dim]) * mask
            else:
                size = [300, 400] if dim == 2 else [80, 100, 120]

            resized = resize_dali(images,
                                  channel_first,
                                  dtype,
                                  interp,
                                  mode,
                                  size,
                                  None,
                                  None,
                                  None,
                                  roi_start,
                                  roi_end,
                                  minibatch_size=minibatch_size,
                                  max_size=max_size(dim))
        else:
            if w_input:
                has_w = fn.random.coin_flip(probability=0.8)
                w = fn.random.uniform(range=size_range) * has_w
            else:
                w = 320  # some fixed value

            if h_input:
                has_h = fn.random.coin_flip(probability=0.8)
                h = fn.random.uniform(range=size_range) * has_h
            else:
                h = 240  # some other fixed value

            if dim >= 3:
                if d_input:
                    has_d = fn.random.coin_flip(probability=0.8)
                    d = fn.random.uniform(range=size_range) * has_d
                else:
                    d = 31  # some other fixed value

            resized = resize_dali(images,
                                  channel_first,
                                  dtype,
                                  interp,
                                  mode,
                                  None,
                                  w,
                                  h,
                                  d,
                                  roi_start,
                                  roi_end,
                                  minibatch_size=minibatch_size,
                                  max_size=max_size(dim))

        outputs = [images, resized]
        if roi_start is not None and roi_end is not None:
            outputs += [roi_start, roi_end]

        for x in (d, h, w, size):
            if x is not None:
                if isinstance(x, _DataNode):
                    outputs.append(x)
                else:
                    outputs.append(
                        types.Constant(np.array(x, dtype=np.float32)))

        dali_pipe.set_outputs(*outputs)

    pil_pipe = Pipeline(batch_size=batch_size,
                        num_threads=8,
                        device_id=0,
                        exec_async=False,
                        exec_pipelined=False)
    with pil_pipe:
        images = fn.external_source(name="images",
                                    layout=layout_str(dim, channel_first))
        sizes = fn.external_source(name="size")
        roi_start = fn.external_source(name="roi_start")
        roi_end = fn.external_source(name="roi_end")
        resized = resize_PIL(dim, channel_first, dtype, interp, images, sizes,
                             roi_start, roi_end)
        resized = fn.reshape(resized, layout=layout_str(dim, channel_first))
        pil_pipe.set_outputs(resized)
    dali_pipe.build()
    pil_pipe.build()

    return dali_pipe, pil_pipe
Ejemplo n.º 26
0
 def random_augmentation(self, probability, augmented, original):
     condition = fn.cast(fn.coin_flip(probability=probability), dtype=types.DALIDataType.BOOL)
     neg_condition = condition ^ True
     return condition * augmented + neg_condition * original
def dali_asr_pipeline(
    train_pipeline,  # True if training, False if validation
    file_root,
    file_list,
    sample_rate,
    silence_threshold,
    resample_range,
    discrete_resample_range,
    window_size,
    window_stride,
    nfeatures,
    nfft,
    frame_splicing_factor,
    dither_coeff,
    pad_align,
    preemph_coeff,
    do_spectrogram_masking=False,
    cutouts_generator=None,
    shard_id=0,
    n_shards=1,
    preprocessing_device="gpu",
    is_triton_pipeline=False,
):
    do_remove_silence = silence_threshold is not None

    def _div_ceil(dividend, divisor):
        return (dividend + (divisor - 1)) // divisor

    if is_triton_pipeline:
        assert not train_pipeline, "Pipeline for Triton shall be a validation pipeline"
        encoded = fn.external_source(device="cpu",
                                     name="DALI_INPUT_0",
                                     no_copy=True)
    else:
        encoded, label = fn.readers.file(
            device="cpu",
            name="file_reader",
            file_root=file_root,
            file_list=file_list,
            shard_id=shard_id,
            num_shards=n_shards,
            shuffle_after_epoch=train_pipeline,
        )

    speed_perturbation_coeffs = None
    if resample_range is not None:
        if discrete_resample_range:
            values = [resample_range[0], 1.0, resample_range[1]]
            speed_perturbation_coeffs = fn.random.uniform(device="cpu",
                                                          values=values)
        else:
            speed_perturbation_coeffs = fn.random.uniform(device="cpu",
                                                          range=resample_range)

    if train_pipeline and speed_perturbation_coeffs is not None:
        dec_sample_rate_arg = speed_perturbation_coeffs * sample_rate
    elif resample_range is None:
        dec_sample_rate_arg = sample_rate
    else:
        dec_sample_rate_arg = None

    audio, _ = fn.decoders.audio(encoded,
                                 sample_rate=dec_sample_rate_arg,
                                 dtype=types.FLOAT,
                                 downmix=True)
    if do_remove_silence:
        begin, length = fn.nonsilent_region(audio, cutoff_db=silence_threshold)
        audio = fn.slice(audio, begin, length, axes=[0])

    # Max duration drop is performed at DataLayer stage

    if preprocessing_device == "gpu":
        audio = audio.gpu()

    if dither_coeff != 0.0:
        audio = audio + fn.random.normal(
            device=preprocessing_device) * dither_coeff

    audio = fn.preemphasis_filter(audio, preemph_coeff=preemph_coeff)

    spec = fn.spectrogram(
        audio,
        nfft=nfft,
        window_length=window_size * sample_rate,
        window_step=window_stride * sample_rate,
    )

    mel_spec = fn.mel_filter_bank(spec,
                                  sample_rate=sample_rate,
                                  nfilter=nfeatures,
                                  normalize=True)

    log_features = fn.to_decibels(mel_spec,
                                  multiplier=np.log(10),
                                  reference=1.0,
                                  cutoff_db=math.log(1e-20))

    log_features_len = fn.shapes(log_features)
    if frame_splicing_factor != 1:
        log_features_len = _div_ceil(log_features_len, frame_splicing_factor)

    log_features = fn.normalize(log_features, axes=[1])
    log_features = fn.pad(log_features,
                          axes=[1],
                          fill_value=0,
                          align=pad_align,
                          shape=(-1, ))

    if train_pipeline and do_spectrogram_masking:
        anchors, shapes = fn.external_source(source=cutouts_generator,
                                             num_outputs=2,
                                             cycle=True)
        log_features = fn.erase(
            log_features,
            anchor=anchors,
            shape=shapes,
            axes=[0, 1],
            fill_value=0,
            normalized_anchor=True,
        )

    # When modifying DALI pipeline returns, make sure you update `output_map`
    # in DALIGenericIterator invocation
    if not is_triton_pipeline:
        return log_features.gpu(), label.gpu(), log_features_len.gpu()
    else:
        return fn.cast(log_features.gpu(), dtype=types.FLOAT16)
                           device='gpu',
                           bytes_per_sample_hint=ImageBytes,
                           size=(H, W))
        images = fn.gaussian_blur(images,
                                  device='gpu',
                                  bytes_per_sample_hint=ImageBytes,
                                  sigma=fn.uniform(range=(0.1, 2)),
                                  window_size=11)
        images = fn.color_twist(images,
                                device='gpu',
                                bytes_per_sample_hint=ImageBytes,
                                brightness=fn.uniform(range=(0.5, 1.5)),
                                contrast=fn.uniform(range=(0.5, 2.5)),
                                saturation=fn.uniform(range=(0.1, 2)))
        images = fn.cast(images,
                         device='gpu',
                         bytes_per_sample_hint=ImageBytes,
                         dtype=DALIDataType.FLOAT)
        images = fn.normalize(
            images,
            device='gpu',
            bytes_per_sample_hint=ImageBytes,
            mean=Constant(numpy.array([[[190.6380, 207.2640, 202.5720]]])),
            stddev=Constant(numpy.array([[[85.2720, 68.6970, 81.4215]]])))
        images = fn.transpose(images,
                              device='gpu',
                              bytes_per_sample_hint=ImageBytes,
                              perm=[2, 0, 1])
        TestingPipe.set_outputs(images, labels)
    TestingLoader = DALIClassificationIterator(TestingPipe,
                                               size=1000 * args.bs)
Ejemplo n.º 29
0
def pipeline():
    inp1 = fn.external_source(device='cpu', name='DALI_INPUT_0')
    inp2 = fn.external_source(device='gpu', name='DALI_INPUT_1')
    return inp1.gpu() / 3, fn.cast(inp2, dtype=dali.types.FLOAT) / 2
Ejemplo n.º 30
0
def _test_random_object_bbox_with_class(max_batch_size,
                                        ndim,
                                        dtype,
                                        format=None,
                                        fg_prob=None,
                                        classes=None,
                                        weights=None,
                                        background=None,
                                        threshold=None,
                                        k_largest=None,
                                        cache=None):
    pipe = dali.Pipeline(max_batch_size, 4, device_id=None, seed=4321)
    background_out = 0 if background is None else background
    classes_out = np.int32([]) if classes is None else classes
    weights_out = np.int32([]) if weights is None else weights
    threshold_out = np.int32([]) if threshold is None else threshold

    if cache:
        source = sampled_dataset(2 * max_batch_size, max_batch_size, ndim,
                                 dtype)
    else:
        source = batch_generator(max_batch_size, ndim, dtype)

    with pipe:
        inp = fn.external_source(source)
        if isinstance(background,
                      dali.pipeline.DataNode) or (background is not None
                                                  and background >= 0):
            inp = fn.cast(inp + (background_out + 1),
                          dtype=np_type_to_dali(dtype))
        # preconfigure
        op = ops.segmentation.RandomObjectBBox(format=format,
                                               foreground_prob=fg_prob,
                                               classes=classes,
                                               class_weights=weights,
                                               background=background,
                                               threshold=threshold,
                                               k_largest=k_largest,
                                               seed=1234)
        outs1 = op(inp, cache_objects=cache)
        outs2 = op(inp, output_class=True)
        if not isinstance(outs1, list):
            outs1 = [outs1]
        # the second instance should have always at least 2 outputs
        assert isinstance(outs2, (list, tuple))
        outputs = [
            inp, classes_out, weights_out, background_out, threshold_out,
            *outs1, *outs2
        ]
        pipe.set_outputs(*outputs)
    pipe.build()

    format = format or "anchor_shape"

    for _ in range(50):
        inp, classes_out, weights_out, background_out, threshold_out, *outs = pipe.run(
        )
        nout = (len(outs) - 1) // 2
        outs1 = outs[:nout]
        outs2 = outs[nout:]
        for i in range(len(outs1)):
            check_batch(outs1[i], outs2[i])

        # Iterate over indices instead of elements, because normal iteration
        # causes an exception to be thrown in native code, making debugging near impossible.
        outs = tuple([np.array(out[i]) for i in range(len(out))]
                     for out in outs1)
        box_class_labels = [
            np.int32(outs2[-1][i]) for i in range(len(outs2[-1]))
        ]

        boxes = convert_boxes(outs, format)

        for i in range(len(inp)):
            in_tensor = inp.at(i)
            class_labels = classes_out.at(i)
            if background is not None or classes is None:
                background_label = background_out.at(i)
            else:
                background_label = 0 if 0 not in class_labels else np.min(
                    class_labels) - 1

            label = box_class_labels[i]
            if classes is not None:
                assert label == background_label or label in list(class_labels)

            is_foreground = label != background_label
            cls_boxes = class_boxes(in_tensor,
                                    label if is_foreground else None)

            if is_foreground:
                ref_boxes = cls_boxes
                if threshold is not None:
                    extent = box_extent(boxes[i])
                    thr = threshold_out.at(i)
                    assert np.all(extent >= thr)
                    ref_boxes = list(
                        filter(lambda box: np.all(box_extent(box) >= thr),
                               cls_boxes))
                if k_largest is not None:
                    assert box_in_k_largest(ref_boxes, boxes[i], k_largest)
            assert contains_box(cls_boxes, boxes[i])