def __init__(self, device_id, n_devices, file_root, file_list, batch_size, sample_rate=16000, window_size=.02, window_stride=.01, nfeatures=64, nfft=512, frame_splicing_factor=3, silence_threshold=-80, dither=.00001, preemph_coeff=.97, lowfreq=0.0, highfreq=0.0, num_threads=1): super().__init__(batch_size, num_threads, device_id, seed=42) self.dither = dither self.frame_splicing_factor = frame_splicing_factor self.read = ops.readers.File(file_root=file_root, file_list=file_list, device="cpu", shard_id=device_id, num_shards=n_devices) self.decode = ops.AudioDecoder(device="cpu", dtype=types.FLOAT, downmix=True) self.normal_distribution = ops.random.Normal(device="cpu") self.preemph = ops.PreemphasisFilter(preemph_coeff=preemph_coeff) self.spectrogram = ops.Spectrogram(device="cpu", nfft=nfft, window_length=window_size * sample_rate, window_step=window_stride * sample_rate) self.mel_fbank = ops.MelFilterBank(device="cpu", sample_rate=sample_rate, nfilter=nfeatures, normalize=True, freq_low=lowfreq, freq_high=highfreq) self.log_features = ops.ToDecibels(device="cpu", multiplier=np.log(10), reference=1.0, cutoff_db=-80) self.get_shape = ops.Shapes(device="cpu") self.normalize = ops.Normalize(axes=[0], device="cpu") self.splicing_transpose = ops.Transpose(device="cpu", perm=[1, 0]) self.splicing_reshape = ops.Reshape(device="cpu", rel_shape=[-1, frame_splicing_factor]) self.splicing_pad = ops.Pad(axes=[0], fill_value=0, align=frame_splicing_factor, shape=[1], device="cpu") self.get_nonsilent_region = ops.NonsilentRegion(device="cpu", cutoff_db=silence_threshold) self.trim_silence = ops.Slice(device="cpu", axes=[0]) self.to_float = ops.Cast(dtype=types.FLOAT)
def __init__(self, input_size: int, scaler: Union[int, float] = 255, mean: List[float] = [0., 0., 0.], std: List[float] = [1., 1., 1.], image_pad_value: Union[int, float] = 0, labels_pad_value: Union[int, float] = -99, normalize: bool = True): """Initialization Args: input_size (int): Target size of image resize scaler (Union[int,float], optional): The scaling factor applied to the input pixel value. Defaults to 255. mean (List[float], optional): Mean pixel values for image normalization. Defaults to [0.,0.,0.]. std (List[float], optional): Standard deviation values for image normalization. Defaults to [1.,1.,1.]. image_pad_value (Union[int,float], optional): Values of the color to pad the image to square.. Defaults to 0. labels_pad_value (Union[int,float], optional): Values used to pad the labels information so it have same dimension. Will be deleted on the dataloader. Defaults to -99. normalize (bool, optional): Will apply normalization if set to True. Defaults to True. """ # By default, CropMirrorNormalize divide each pixel by 255, to make it similar with Pytorch Loader behavior # in which we can control the scaler, we add additional scaler to reverse the effect self.normalize = normalize self.image_normalize = ops.CropMirrorNormalize( device='gpu', mean=[value * 255 for value in mean], std=[value * 255 for value in std], output_layout='CHW', image_type=types.DALIImageType.BGR) self.scaler = ops.Normalize(device='gpu', scale=float(255 / scaler), mean=0, stddev=1) # Padding and resize to prepare tensor output self.image_pad = ops.Paste(device='gpu', fill_value=image_pad_value, ratio=1, min_canvas_size=input_size, paste_x=0, paste_y=0) self.labels_pad = ops.Pad(device='cpu', axes=(0, 1), fill_value=labels_pad_value) self.model_input_resize = ops.Resize( device='gpu', interp_type=types.DALIInterpType.INTERP_CUBIC, resize_longer=input_size) self.peek_shape = ops.Shapes(device='gpu')
def __init__(self, batch_size, num_threads, device_id): super(COCOPipeline, self).__init__(batch_size, num_threads, device_id, exec_async=False, exec_pipelined=False, seed=15) self.input = ops.COCOReader(file_root=file_root, annotations_file=annotations_file, shard_id=device_id, num_shards=num_gpus, ratio=True, ltrb=True) self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB) self.flip = ops.Flip(device="gpu") self.bbflip = ops.BbFlip(device="cpu", ltrb=True) self.paste_pos = ops.Uniform(range=(0, 1)) self.paste_ratio = ops.Uniform(range=(1, 2)) self.coin = ops.CoinFlip(probability=0.5) self.coin2 = ops.CoinFlip(probability=0.5) self.paste = ops.Paste(device="gpu", fill_value=(32, 64, 128)) self.bbpaste = ops.BBoxPaste(device="cpu", ltrb=True) self.prospective_crop = ops.RandomBBoxCrop(device="cpu", aspect_ratio=[0.5, 2.0], thresholds=[0.1, 0.3, 0.5], scaling=[0.8, 1.0], ltrb=True) self.slice = ops.Slice(device="gpu") # resize self.resize = ops.Resize(device="gpu", interp_type=types.INTERP_LINEAR, resize_shorter=800, max_size=1200) self.shape = ops.Shapes(device="gpu") # normalize and convert hwc to chw self.cmnp = ops.CropMirrorNormalize( device="gpu", output_dtype=types.FLOAT, output_layout=types.NCHW, image_type=types.RGB, mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) # padding axes=(0,1) -> hwc, axes=(1,2) -> chw self.padding = ops.Pad(device="gpu", fill_value=0, axes=(1, 2), shape=(800, 1200))
def __init__(self, size, fill_value): self.rz_img = ops.Resize(device="gpu", resize_longer=size) self.rz_ann = ops.Resize(device="gpu", resize_longer=size, interp_type=types.DALIInterpType.INTERP_NN) self.cp_img = ops.Crop(device="gpu", fill_values=fill_value, out_of_bounds_policy='pad') self.cp_ann = ops.Crop(device="gpu", fill_values=0, out_of_bounds_policy='pad') self.size = ops.Constant(fdata=size) self.pos = ops.Uniform(range=[0, 1]) self.scale = ops.Uniform(range=[0.667, 1.5]) self.shape = ops.Shapes(device="gpu")
def __init__(self, file_root, annotations_file, batch_size, num_threads, device_id=0, num_gpus=1, mean=(123.675, 116.28, 103.53), stddev=(1., 1., 1.), random_shuffle=True): super(COCOPipeline, self).__init__(batch_size, num_threads, device_id, seed = 15) self.input = ops.COCOReader(file_root=file_root, annotations_file=annotations_file, shard_id=device_id, num_shards=num_gpus, ratio=True, skip_empty=True, prefetch_queue_depth=32, random_shuffle=True) self.decode = ops.ImageDecoder(device='mixed', output_type=types.BGR) self.resize = ops.Resize(device='gpu', max_size=1216, resize_shorter=800) self.flip = ops.CoinFlip(device='cpu') self.bbox_flip = ops.BbFlip(device='gpu') self.CMN = ops.CropMirrorNormalize(device='gpu', mean=mean, std=stddev, output_layout='HWC') self.image_pad = ops.Pad(device='gpu', fill_value=0, axes=(0,1), shape=(1216, 1216)) self.bbox_pad = ops.Pad(device='gpu', fill_value=0, axes=(0,), shape=(100,)) self.label_pad = ops.Pad(device='gpu', fill_value=-1, axes=(0,), shape=(100,)) self.get_shape = ops.Shapes(device='gpu') self.float_cast = ops.Cast(device='gpu', dtype=types.FLOAT)
def __init__( self, *, train_pipeline: bool, # True if train pipeline, False if validation pipeline device_id, num_threads, batch_size, file_root: str, file_list: str, sample_rate, discrete_resample_range: bool, resample_range: list, window_size, window_stride, nfeatures, nfft, frame_splicing_factor, dither_coeff, silence_threshold, preemph_coeff, pad_align, max_duration, mask_time_num_regions, mask_time_min, mask_time_max, mask_freq_num_regions, mask_freq_min, mask_freq_max, mask_both_num_regions, mask_both_min_time, mask_both_max_time, mask_both_min_freq, mask_both_max_freq, preprocessing_device="gpu"): super().__init__(batch_size, num_threads, device_id) self._dali_init_log(locals()) if torch.distributed.is_initialized(): shard_id = torch.distributed.get_rank() n_shards = torch.distributed.get_world_size() else: shard_id = 0 n_shards = 1 self.preprocessing_device = preprocessing_device.lower() assert self.preprocessing_device == "cpu" or self.preprocessing_device == "gpu", \ "Incorrect preprocessing device. Please choose either 'cpu' or 'gpu'" self.frame_splicing_factor = frame_splicing_factor assert frame_splicing_factor == 1, "DALI doesn't support frame splicing operation" self.resample_range = resample_range self.discrete_resample_range = discrete_resample_range self.train = train_pipeline self.sample_rate = sample_rate self.dither_coeff = dither_coeff self.nfeatures = nfeatures self.max_duration = max_duration self.mask_params = { 'time_num_regions': mask_time_num_regions, 'time_min': mask_time_min, 'time_max': mask_time_max, 'freq_num_regions': mask_freq_num_regions, 'freq_min': mask_freq_min, 'freq_max': mask_freq_max, 'both_num_regions': mask_both_num_regions, 'both_min_time': mask_both_min_time, 'both_max_time': mask_both_max_time, 'both_min_freq': mask_both_min_freq, 'both_max_freq': mask_both_max_freq, } self.do_remove_silence = True if silence_threshold is not None else False self.read = ops.FileReader(device="cpu", file_root=file_root, file_list=file_list, shard_id=shard_id, num_shards=n_shards, shuffle_after_epoch=train_pipeline) # TODO change ExternalSource to Uniform for new DALI release if discrete_resample_range and resample_range is not None: self.speed_perturbation_coeffs = ops.ExternalSource( device="cpu", cycle=True, source=self._discrete_resample_coeffs_generator) elif resample_range is not None: self.speed_perturbation_coeffs = random.Uniform( device="cpu", range=resample_range) else: self.speed_perturbation_coeffs = None self.decode = ops.AudioDecoder( device="cpu", sample_rate=self.sample_rate if resample_range is None else None, dtype=types.FLOAT, downmix=True) self.normal_distribution = random.Normal(device=preprocessing_device) self.preemph = ops.PreemphasisFilter(device=preprocessing_device, preemph_coeff=preemph_coeff) self.spectrogram = ops.Spectrogram( device=preprocessing_device, nfft=nfft, window_length=window_size * sample_rate, window_step=window_stride * sample_rate) self.mel_fbank = ops.MelFilterBank(device=preprocessing_device, sample_rate=sample_rate, nfilter=self.nfeatures, normalize=True) self.log_features = ops.ToDecibels(device=preprocessing_device, multiplier=np.log(10), reference=1.0, cutoff_db=math.log(1e-20)) self.get_shape = ops.Shapes(device=preprocessing_device) self.normalize = ops.Normalize(device=preprocessing_device, axes=[1]) self.pad = ops.Pad(device=preprocessing_device, axes=[1], fill_value=0, align=pad_align) # Silence trimming self.get_nonsilent_region = ops.NonsilentRegion( device="cpu", cutoff_db=silence_threshold) self.trim_silence = ops.Slice(device="cpu", normalized_anchor=False, normalized_shape=False, axes=[0]) self.to_float = ops.Cast(device="cpu", dtype=types.FLOAT) # Spectrogram masking self.spectrogram_cutouts = ops.ExternalSource( source=self._cutouts_generator, num_outputs=2, cycle=True) self.mask_spectrogram = ops.Erase(device=preprocessing_device, axes=[0, 1], fill_value=0, normalized_anchor=True)
def __init__(self, device_id, num_threads, resample_range: list, sample_rate=16000, window_size=0.02, window_stride=0.01, window="hann", normalize="per_feature", n_fft=None, preemph=0.97, nfilt=64, lowfreq=0, highfreq=0, log=True, dither=constant, pad_to=8, max_duration=15.0, frame_splicing=3, batch_size=1, total_samples=16, audio_fp16_input=True, device='gpu'): super().__init__(batch_size, num_threads, device_id, exec_async=True, exec_pipelined=True, seed =12, prefetch_queue_depth=1) self._dali_init_log(locals()) if torch.distributed.is_initialized(): shard_id = torch.distributed.get_rank() n_shards = torch.distributed.get_world_size() else: shard_id = 0 n_shards = 1 torch_windows = { 'hann': torch.hann_window, 'hamming': torch.hamming_window, 'blackman': torch.blackman_window, 'bartlett': torch.bartlett_window, 'none': None, } self.audio_fp16_input=audio_fp16_input self.total_samples = total_samples self.win_length = int(sample_rate * window_size) # frame size self.hop_length = int(sample_rate * window_stride) self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length)) self.normalize = normalize self.log = log self.dither = dither self.frame_splicing = frame_splicing self.nfilt = nfilt self.preemph = preemph self.pad_to = pad_to self.highfreq = highfreq or sample_rate / 2 window_fn = torch_windows.get(window, None) window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None self.sample_rate = sample_rate self.window_size = window_size self.window_stride = window_stride self.window = window_tensor self.lowfreq = lowfreq self.log = log self.device = device win_unpadded = self.window.tolist() win_padded = win_unpadded + [0] * (self.n_fft - len(win_unpadded)) print("self.n_fft = {}".format(self.n_fft)) print("self.hop_length = {}".format(self.hop_length)) print("self.win_length = {}".format(self.win_length)) print("self.window_tensor = {}".format(self.window)) print("self.sample_rate = {}".format(self.sample_rate)) print("self.window_size = {}".format(self.window_size)) print("self.window_stride = {}".format(self.window_stride)) print("self.lowfreq = {}".format(self.lowfreq)) print("self.device = {}".format(self.device)) self.extsrc = ops.ExternalSource(name="INPUT_0", device=self.device, no_copy=True) self.preemph = ops.PreemphasisFilter(preemph_coeff=preemph, device=self.device) self.spectrogram = ops.Spectrogram(device=self.device, nfft=self.n_fft, center_windows=True, window_fn=win_padded, window_length=len(win_padded), window_step=self.hop_length ) self.mel_fbank = ops.MelFilterBank(device=self.device, sample_rate=self.sample_rate, nfilter=self.nfilt, freq_high=self.highfreq, freq_low=self.lowfreq, normalize=normalize ) self.log_features = ops.ToDecibels(device=self.device, multiplier=np.log(10), reference=1.0, cutoff_db=math.log(1e-20)) self.get_shape = ops.Shapes(device=self.device) self.normalize = ops.Normalize(axes=[0], device=self.device, ddof=1) self.pad = ops.Pad(axes=[0,1], fill_value=0, shape=[502,240], device=self.device) # Frame splicing self.splicing_transpose = ops.Transpose(device=self.device, perm=[1, 0]) self.splicing_reshape = ops.Reshape(device=self.device, rel_shape=[-1, self.frame_splicing]) self.splicing_pad = ops.Pad(axes=[0], fill_value=0, align=self.frame_splicing, shape=[1], device=self.device) self.to_float16 = ops.Cast(dtype=types.FLOAT16, device=self.device) self.to_float32 = ops.Cast(dtype=types.FLOAT, device=self.device) self.samples_done = 0
def __init__(self, *, pipeline_type, device_id, num_threads, batch_size, file_root: str, sampler, sample_rate, resample_range: list, window_size, window_stride, nfeatures, nfft, dither_coeff, silence_threshold, preemph_coeff, max_duration, preprocessing_device="gpu"): super().__init__(batch_size, num_threads, device_id) self._dali_init_log(locals()) if torch.distributed.is_initialized(): shard_id = torch.distributed.get_rank() n_shards = torch.distributed.get_world_size() else: shard_id = 0 n_shards = 1 self.preprocessing_device = preprocessing_device.lower() assert self.preprocessing_device == "cpu" or self.preprocessing_device == "gpu", \ "Incorrect preprocessing device. Please choose either 'cpu' or 'gpu'" self.resample_range = resample_range train_pipeline = pipeline_type == 'train' self.train = train_pipeline self.sample_rate = sample_rate self.dither_coeff = dither_coeff self.nfeatures = nfeatures self.max_duration = max_duration self.do_remove_silence = True if silence_threshold is not None else False shuffle = train_pipeline and not sampler.is_sampler_random() self.read = ops.FileReader(name="Reader", pad_last_batch=(pipeline_type == 'val'), device="cpu", file_root=file_root, file_list=sampler.get_file_list_path(), shard_id=shard_id, num_shards=n_shards, shuffle_after_epoch=shuffle) # TODO change ExternalSource to Uniform for new DALI release if resample_range is not None: self.speed_perturbation_coeffs = ops.Uniform(device="cpu", range=resample_range) else: self.speed_perturbation_coeffs = None self.decode = ops.AudioDecoder( device="cpu", sample_rate=self.sample_rate if resample_range is None else None, dtype=types.FLOAT, downmix=True) self.normal_distribution = ops.NormalDistribution( device=preprocessing_device) self.preemph = ops.PreemphasisFilter(device=preprocessing_device, preemph_coeff=preemph_coeff) self.spectrogram = ops.Spectrogram( device=preprocessing_device, nfft=nfft, window_length=window_size * sample_rate, window_step=window_stride * sample_rate) self.mel_fbank = ops.MelFilterBank(device=preprocessing_device, sample_rate=sample_rate, nfilter=self.nfeatures, normalize=True) self.log_features = ops.ToDecibels(device=preprocessing_device, multiplier=np.log(10), reference=1.0, cutoff_db=math.log(1e-20)) self.get_shape = ops.Shapes(device=preprocessing_device) self.normalize = ops.Normalize(device=preprocessing_device, axes=[1]) self.pad = ops.Pad(device=preprocessing_device, fill_value=0) # Silence trimming self.get_nonsilent_region = ops.NonsilentRegion( device="cpu", cutoff_db=silence_threshold) self.trim_silence = ops.Slice(device="cpu", normalized_anchor=False, normalized_shape=False, axes=[0]) self.to_float = ops.Cast(device="cpu", dtype=types.FLOAT)