def run_clark2009(catchment, output_dem, hydro_year_to_take, met_inp_folder,
                  catchment_shp_folder):
    """
    wrapper to call the clark 2009 snow model for given area
    :param catchment: string giving catchment area to run model on
    :param output_dem: string identifying the grid to run model on
    :param hydro_year_to_take: integer specifying the hydrological year to run model over. 2001 = 1/4/2000 to 31/3/2001
    :return: st_swe, st_melt, st_acc, out_dt, mask. daily grids of SWE at day's end, total melt and accumulation over the previous day, and datetimes of ouput
    """
    print('loading met data')
    data_id = '{}_{}'.format(catchment, output_dem)
    inp_met = nc.Dataset(
        met_inp_folder +
        '/met_inp_{}_hy{}.nc'.format(data_id, hydro_year_to_take), 'r')
    inp_dt = nc.num2date(inp_met.variables['time'][:],
                         inp_met.variables['time'].units)
    inp_doy = convert_date_hydro_DOY(inp_dt)
    inp_hourdec = [datt.hour for datt in inp_dt]
    inp_ta = inp_met.variables['temperature'][:]
    inp_precip = inp_met.variables['precipitation'][:]
    print('met data loaded')

    mask = create_mask_from_shpfile(
        inp_met.variables['lat'][:], inp_met.variables['lon'][:],
        catchment_shp_folder + '/{}.shp'.format(catchment))
    # TODO: think about masking input data to speed up

    print('starting snow model')
    # start with no snow.
    # call main function once hourly/sub-hourly temp and precip data available.
    st_swe, st_melt, st_acc = snow_main_simple(inp_ta,
                                               inp_precip,
                                               inp_doy,
                                               inp_hourdec,
                                               dtstep=3600)
    out_dt = np.asarray(
        make_regular_timeseries(inp_dt[0], inp_dt[-1] + dt.timedelta(days=1),
                                86400))

    print('snow model finished')

    # mask out values outside of catchment
    st_swe[:, mask == False] = np.nan
    st_melt[:, mask == False] = np.nan
    st_acc[:, mask == False] = np.nan

    return st_swe, st_melt, st_acc, out_dt, mask
Ejemplo n.º 2
0
 # set up input and output DEM for processing
 # output DEM
 nztm_dem, x_centres, y_centres, lat_array, lon_array = setup_nztm_dem(
     dem_file, origin=origin)
 data_id = '{}_{}'.format(catchment,
                          output_dem)  # name to identify the output data
 if mask_dem == True:
     # Get the masks for the individual regions of interest
     if mask_created == True:  # load precalculated mask
         mask = np.load(mask_folder +
                        '/{}_{}.npy'.format(catchment, output_dem))
         if origin == 'topleft':
             mask = np.flipud(mask)
     else:  # create mask and save to npy file
         # masks = get_masks() #TODO set up for multiple masks
         mask = create_mask_from_shpfile(lat_array, lon_array, mask_shpfile)
         if origin == 'topleft':  # flip to save as bottom left
             mask = np.flipud(mask)
         np.save(mask_folder + '/{}_{}.npy'.format(catchment, output_dem),
                 mask)
         if origin == 'topleft':  # flip back to topleft
             mask = np.flipud(mask)
     # Trim down the number of latitudes requested so it all stays in memory
     lats, lons, elev, northings, eastings = trim_lat_lon_bounds(
         mask, lat_array, lon_array, nztm_dem, y_centres, x_centres)
     _, _, trimmed_mask, _, _ = trim_lat_lon_bounds(mask,
                                                    lat_array, lon_array,
                                                    mask.copy(), y_centres,
                                                    x_centres)
 else:
     mask = None
Ejemplo n.º 3
0
    if which_model == 'clark2009':
        config['tmelt'] = 273.16
    if which_model == 'dsc_snow':
        config['tmelt'] = 274.16
    for hydro_year_to_take in hydro_years_to_take:
        # run model and return timeseries of daily swe, acc and melt.
        met_infile = met_data_folder + '/met_inp_{}_{}_hy{}.nc'.format(
            catchment, output_dem, hydro_year_to_take)
        st_swe, st_melt, st_acc = snow_main(met_infile,
                                            which_melt=which_model,
                                            **config)
        # create the extra variables required by catchment_evaluation
        inp_met = nc.Dataset(met_infile, 'r')
        inp_dt = nc.num2date(inp_met.variables['time'][:],
                             inp_met.variables['time'].units)
        out_dt = np.asarray(
            make_regular_timeseries(inp_dt[0], inp_dt[-1], 86400))
        mask = create_mask_from_shpfile(
            inp_met.variables['lat'][:], inp_met.variables['lon'][:],
            catchment_shp_folder + '/{}.shp'.format(catchment))
        pickle.dump(
            [
                st_swe.astype(dtype=np.float32),
                st_melt.astype(dtype=np.float32),
                st_acc.astype(dtype=np.float32), out_dt, mask, config
            ],
            open(
                output_folder + '/{}_{}_hy{}_{}.pkl'.format(
                    catchment, output_dem, hydro_year_to_take, which_model),
                'wb'), -1)