def __init__(self, methodname): """Initialize the test class.""" super().__init__(methodname) self.ntrain = 100 self.nclass = 5 self.ndim = 5 # Generate random data. np.random.seed(1234) self.data = np.random.rand(self.ntrain, self.ndim) * 10 self.labels = np.random.randint(self.nclass, size=self.ntrain) self.labels = (np.arange(self.nclass) == self.labels[:, None]).astype( 'f') # make one-hot # Set model, optimizer and loss. self.model = DNNet(layer_sizes=[self.ndim, self.nclass], activation=objax.functional.softmax) self.model_vars = self.model.vars() def loss_function(x, y): logit = self.model(x) loss = ((y - logit)**2).mean(1).mean(0) return loss, {'loss': loss} self.loss = loss_function
def test_typical_training_loop(self): # Define model and optimizer model = DNNet((32, 10), objax.functional.leaky_relu) opt = objax.optimizer.Momentum(model.vars(), nesterov=True) # Predict op predict_op = lambda x: objax.functional.softmax(model(x, training=False)) self.assertDictEqual(objax.util.find_used_variables(predict_op), model.vars(scope='model.')) # Loss function def loss(x, label): logit = model(x, training=True) xe_loss = objax.functional.loss.cross_entropy_logits_sparse(logit, label).mean() return xe_loss self.assertDictEqual(objax.util.find_used_variables(loss), model.vars(scope='model.')) # Gradients and loss function loss_gv = objax.GradValues(loss, objax.util.find_used_variables(loss)) def train_op(x, y, learning_rate): grads, loss = loss_gv(x, y) opt(learning_rate, grads) return loss self.assertDictEqual(objax.util.find_used_variables(train_op), {**model.vars(scope='loss_gv.model.'), **opt.vars(scope='opt.')})
class TestPrivateGradValues(unittest.TestCase): def __init__(self, methodname): """Initialize the test class.""" super().__init__(methodname) self.ntrain = 100 self.nclass = 5 self.ndim = 5 # Generate random data. np.random.seed(1234) self.data = np.random.rand(self.ntrain, self.ndim) * 10 self.labels = np.random.randint(self.nclass, size=self.ntrain) self.labels = (np.arange(self.nclass) == self.labels[:, None]).astype( 'f') # make one-hot # Set model, optimizer and loss. self.model = DNNet(layer_sizes=[self.ndim, self.nclass], activation=objax.functional.softmax) self.model_vars = self.model.vars() def loss_function(x, y): logit = self.model(x) loss = ((y - logit)**2).mean(1).mean(0) return loss, {'loss': loss} self.loss = loss_function def test_private_gradvalues_compare_nonpriv(self): """Test if PrivateGradValues without clipping / noise is the same as non-private GradValues.""" l2_norm_clip = 1e10 noise_multiplier = 0 for use_norm_accumulation in [True, False]: for microbatch in [1, 10, self.ntrain]: gv_priv = objax.Jit( objax.privacy.dpsgd.PrivateGradValues( self.loss, self.model_vars, noise_multiplier, l2_norm_clip, microbatch, batch_axis=(0, 0), use_norm_accumulation=use_norm_accumulation)) gv = objax.GradValues(self.loss, self.model_vars) g_priv, v_priv = gv_priv(self.data, self.labels) g, v = gv(self.data, self.labels) # Check the shape of the gradient. self.assertEqual(g_priv[0].shape, tuple([self.nclass])) self.assertEqual(g_priv[1].shape, tuple([self.ndim, self.nclass])) # Check if the private gradient is similar to the non-private gradient. np.testing.assert_allclose(g[0], g_priv[0], atol=1e-7) np.testing.assert_allclose(g[1], g_priv[1], atol=1e-7) np.testing.assert_allclose(v_priv[0], self.loss(self.data, self.labels)[0], atol=1e-7) def test_private_gradvalues_clipping(self): """Test if the gradient norm is within l2_norm_clip.""" noise_multiplier = 0 acceptable_float_error = 1e-8 for use_norm_accumulation in [True, False]: for microbatch in [1, 10, self.ntrain]: for l2_norm_clip in [0, 1e-2, 1e-1, 1.0]: gv_priv = objax.Jit( objax.privacy.dpsgd.PrivateGradValues( self.loss, self.model_vars, noise_multiplier, l2_norm_clip, microbatch, batch_axis=(0, 0), use_norm_accumulation=use_norm_accumulation)) g_priv, v_priv = gv_priv(self.data, self.labels) # Get the actual squared norm of the gradient. g_normsquared = sum([np.sum(g**2) for g in g_priv]) self.assertLessEqual( g_normsquared, l2_norm_clip**2 + acceptable_float_error) np.testing.assert_allclose(v_priv[0], self.loss( self.data, self.labels)[0], atol=1e-7) def test_private_gradvalues_noise(self): """Test if the noise std is around expected.""" runs = 100 alpha = 0.0001 for use_norm_accumulation in [True, False]: for microbatch in [1, 10, self.ntrain]: for noise_multiplier in [0.1, 10.0]: for l2_norm_clip in [0.01, 0.1]: gv_priv = objax.Jit( objax.privacy.dpsgd.PrivateGradValues( self.loss, self.model_vars, noise_multiplier, l2_norm_clip, microbatch, batch_axis=(0, 0), use_norm_accumulation=use_norm_accumulation)) # Repeat the run and collect all gradients. g_privs = [] for i in range(runs): g_priv, v_priv = gv_priv(self.data, self.labels) g_privs.append( np.concatenate( [g_n.reshape(-1) for g_n in g_priv])) np.testing.assert_allclose(v_priv[0], self.loss( self.data, self.labels)[0], atol=1e-7) g_privs = np.array(g_privs) # Compute empirical std and expected std. std_empirical = np.std(g_privs, axis=0, ddof=1) std_theoretical = l2_norm_clip * noise_multiplier / ( self.ntrain // microbatch) # Conduct chi-square test for correct expected standard # deviation. chi2_value = ( runs - 1) * std_empirical**2 / std_theoretical**2 chi2_cdf = chi2.cdf(chi2_value, runs - 1) self.assertTrue( np.all(alpha <= chi2_cdf) and np.all(chi2_cdf <= 1.0 - alpha)) # Conduct chi-square test for incorrect expected standard # deviations: expect failure. chi2_value = (runs - 1) * std_empirical**2 / ( 1.25 * std_theoretical)**2 chi2_cdf = chi2.cdf(chi2_value, runs - 1) self.assertFalse( np.all(alpha <= chi2_cdf) and np.all(chi2_cdf <= 1.0 - alpha)) chi2_value = (runs - 1) * std_empirical**2 / ( 0.75 * std_theoretical)**2 chi2_cdf = chi2.cdf(chi2_value, runs - 1) self.assertFalse( np.all(alpha <= chi2_cdf) and np.all(chi2_cdf <= 1.0 - alpha))
flat_test_images = np.reshape( data['test']['image'].transpose(0, 3, 1, 2) / 127.5 - 1, (test_size, image_size)) test = EasyDict(image=flat_test_images, label=data['test']['label']) train = EasyDict(image=flat_train_images, label=data['train']['label']) del data # Settings lr = 0.0002 batch = 64 num_train_epochs = 40 dnn_layer_sizes = image_size, 128, 10 logdir = f'experiments/classify/img/mnist/filters{dnn_layer_sizes}' # Model model = DNNet(dnn_layer_sizes, leaky_relu) model_ema = objax.optimizer.ExponentialMovingAverageModule(model, momentum=0.999) opt = objax.optimizer.Adam(model.vars()) @objax.Function.with_vars(model.vars()) def loss(x, label): logit = model(x) return objax.functional.loss.cross_entropy_logits(logit, label).mean() gv = objax.GradValues(loss, model.vars()) @objax.Function.with_vars(model.vars() + gv.vars() + opt.vars() +