Ejemplo n.º 1
0
 def test_raise_error_on_empty_matcher(self):
   matcher_text_proto = """
   """
   matcher_proto = matcher_pb2.Matcher()
   text_format.Merge(matcher_text_proto, matcher_proto)
   with self.assertRaises(ValueError):
     matcher_builder.build(matcher_proto)
Ejemplo n.º 2
0
def _build_ssd_model(ssd_config, is_training, add_summaries):
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.

  Returns:
    SSDMetaArch based on the config.
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
  feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor,
                                                   is_training)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
  ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                  ssd_config.box_predictor,
                                                  is_training, num_classes)
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight,
   hard_example_miner) = losses_builder.build(ssd_config.loss)
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches

  return ssd_meta_arch.SSDMetaArch(
      is_training,
      anchor_generator,
      ssd_box_predictor,
      box_coder,
      feature_extractor,
      matcher,
      region_similarity_calculator,
      image_resizer_fn,
      non_max_suppression_fn,
      score_conversion_fn,
      classification_loss,
      localization_loss,
      classification_weight,
      localization_weight,
      normalize_loss_by_num_matches,
      hard_example_miner,
      add_summaries=add_summaries)
Ejemplo n.º 3
0
 def test_build_bipartite_matcher(self):
   matcher_text_proto = """
     bipartite_matcher {
     }
   """
   matcher_proto = matcher_pb2.Matcher()
   text_format.Merge(matcher_text_proto, matcher_proto)
   matcher_object = matcher_builder.build(matcher_proto)
   self.assertTrue(
       isinstance(matcher_object, bipartite_matcher.GreedyBipartiteMatcher))
Ejemplo n.º 4
0
 def test_build_arg_max_matcher_with_defaults(self):
   matcher_text_proto = """
     argmax_matcher {
     }
   """
   matcher_proto = matcher_pb2.Matcher()
   text_format.Merge(matcher_text_proto, matcher_proto)
   matcher_object = matcher_builder.build(matcher_proto)
   self.assertTrue(isinstance(matcher_object, argmax_matcher.ArgMaxMatcher))
   self.assertAlmostEqual(matcher_object._matched_threshold, 0.5)
   self.assertAlmostEqual(matcher_object._unmatched_threshold, 0.5)
   self.assertTrue(matcher_object._negatives_lower_than_unmatched)
   self.assertFalse(matcher_object._force_match_for_each_row)
Ejemplo n.º 5
0
 def test_build_arg_max_matcher_with_non_default_parameters(self):
   matcher_text_proto = """
     argmax_matcher {
       matched_threshold: 0.7
       unmatched_threshold: 0.3
       negatives_lower_than_unmatched: false
       force_match_for_each_row: true
       use_matmul_gather: true
     }
   """
   matcher_proto = matcher_pb2.Matcher()
   text_format.Merge(matcher_text_proto, matcher_proto)
   matcher_object = matcher_builder.build(matcher_proto)
   self.assertTrue(isinstance(matcher_object, argmax_matcher.ArgMaxMatcher))
   self.assertAlmostEqual(matcher_object._matched_threshold, 0.7)
   self.assertAlmostEqual(matcher_object._unmatched_threshold, 0.3)
   self.assertFalse(matcher_object._negatives_lower_than_unmatched)
   self.assertTrue(matcher_object._force_match_for_each_row)
   self.assertTrue(matcher_object._use_matmul_gather)
Ejemplo n.º 6
0
def _build_ssd_model(ssd_config, is_training):
    """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.

  Returns:
    SSDMetaArch based on the config.
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
    num_classes = ssd_config.num_classes

    # Feature extractor
    feature_extractor = _build_ssd_feature_extractor(
        ssd_config.feature_extractor, is_training)

    box_coder = box_coder_builder.build(ssd_config.box_coder)
    matcher = matcher_builder.build(ssd_config.matcher)
    region_similarity_calculator = sim_calc.build(
        ssd_config.similarity_calculator)
    ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                    ssd_config.box_predictor,
                                                    is_training, num_classes)
    anchor_generator = anchor_generator_builder.build(
        ssd_config.anchor_generator)
    image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
    non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
        ssd_config.post_processing)
    (classification_loss, localization_loss, classification_weight,
     localization_weight,
     hard_example_miner) = losses_builder.build(ssd_config.loss)
    normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches

    return ssd_meta_arch.SSDMetaArch(
        is_training, anchor_generator, ssd_box_predictor, box_coder,
        feature_extractor, matcher, region_similarity_calculator,
        image_resizer_fn, non_max_suppression_fn, score_conversion_fn,
        classification_loss, localization_loss, classification_weight,
        localization_weight, normalize_loss_by_num_matches, hard_example_miner)
Ejemplo n.º 7
0
 def test_build_arg_max_matcher_with_non_default_parameters(self):
   matcher_text_proto = """
     argmax_matcher {
       matched_threshold: 0.7
       unmatched_threshold: 0.3
       negatives_lower_than_unmatched: false
       force_match_for_each_row: true
       use_matmul_gather: true
     }
   """
   matcher_proto = matcher_pb2.Matcher()
   text_format.Merge(matcher_text_proto, matcher_proto)
   matcher_object = matcher_builder.build(matcher_proto)
   self.assertTrue(isinstance(matcher_object, argmax_matcher.ArgMaxMatcher))
   self.assertAlmostEqual(matcher_object._matched_threshold, 0.7)
   self.assertAlmostEqual(matcher_object._unmatched_threshold, 0.3)
   self.assertFalse(matcher_object._negatives_lower_than_unmatched)
   self.assertTrue(matcher_object._force_match_for_each_row)
   self.assertTrue(matcher_object._use_matmul_gather)
Ejemplo n.º 8
0
def _build_ssd_model(ssd_config, is_training):
    """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.

  Returns:
    SSDMetaArch based on the config.
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
    num_classes = ssd_config.num_classes

    # Feature extractor
    feature_extractor = _build_ssd_feature_extractor(
        ssd_config.feature_extractor, is_training)

    box_coder = box_coder_builder.build(ssd_config.box_coder)
    matcher = matcher_builder.build(ssd_config.matcher)
    region_similarity_calculator = sim_calc.build(
        ssd_config.similarity_calculator)
    ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                    ssd_config.box_predictor,
                                                    is_training, num_classes)
    anchor_generator = anchor_generator_builder.build(
        ssd_config.anchor_generator)
    image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
    non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
        ssd_config.post_processing)
    (classification_loss, localization_loss, classification_weight,
     localization_weight,
     hard_example_miner) = losses_builder.build(ssd_config.loss)
    normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches

    common_kwargs = {
        'is_training': is_training,
        'anchor_generator': anchor_generator,
        'box_predictor': ssd_box_predictor,
        'box_coder': box_coder,
        'feature_extractor': feature_extractor,
        'matcher': matcher,
        'region_similarity_calculator': region_similarity_calculator,
        'image_resizer_fn': image_resizer_fn,
        'non_max_suppression_fn': non_max_suppression_fn,
        'score_conversion_fn': score_conversion_fn,
        'classification_loss': classification_loss,
        'localization_loss': localization_loss,
        'classification_loss_weight': classification_weight,
        'localization_loss_weight': localization_weight,
        'normalize_loss_by_num_matches': normalize_loss_by_num_matches,
        'hard_example_miner': hard_example_miner
    }

    if isinstance(anchor_generator,
                  yolo_grid_anchor_generator.YoloGridAnchorGenerator):
        return yolo_meta_arch.YOLOMetaArch(**common_kwargs)
    else:
        return ssd_meta_arch.SSDMetaArch(**common_kwargs)
Ejemplo n.º 9
0
def _build_ssd_model(ssd_config, is_training, add_summaries):
  
  num_classes = ssd_config.num_classes

  # Feature extractor
  feature_extractor = _build_ssd_feature_extractor(
      feature_extractor_config=ssd_config.feature_extractor,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      is_training=is_training)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
  negative_class_weight = ssd_config.negative_class_weight
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
        hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight, hard_example_miner, random_example_sampler,
   expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize

  equalization_loss_config = ops.EqualizationLossConfig(
      weight=ssd_config.loss.equalization_loss.weight,
      exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
      negative_class_weight=negative_class_weight)

  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
  kwargs = {}

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
      target_assigner_instance=target_assigner_instance,
      add_summaries=add_summaries,
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
      add_background_class=ssd_config.add_background_class,
      explicit_background_class=ssd_config.explicit_background_class,
      random_example_sampler=random_example_sampler,
      expected_loss_weights_fn=expected_loss_weights_fn,
      use_confidences_as_targets=ssd_config.use_confidences_as_targets,
      implicit_example_weight=ssd_config.implicit_example_weight,
      equalization_loss_config=equalization_loss_config,
      **kwargs)
Ejemplo n.º 10
0
def _build_ssd_model(ssd_config,
                     is_training,
                     add_summaries,
                     add_background_class=True):
    """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.
    add_background_class: Whether to add an implicit background class to one-hot
      encodings of groundtruth labels. Set to false if using groundtruth labels
      with an explicit background class or using multiclass scores instead of
      truth in the case of distillation.
  Returns:
    SSDMetaArch based on the config.

  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
    num_classes = ssd_config.num_classes

    # Feature extractor
    feature_extractor = _build_ssd_feature_extractor(
        feature_extractor_config=ssd_config.feature_extractor,
        is_training=is_training)

    box_coder = box_coder_builder.build(ssd_config.box_coder)
    matcher = matcher_builder.build(ssd_config.matcher)
    region_similarity_calculator = sim_calc.build(
        ssd_config.similarity_calculator)
    encode_background_as_zeros = ssd_config.encode_background_as_zeros
    negative_class_weight = ssd_config.negative_class_weight
    ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                    ssd_config.box_predictor,
                                                    is_training, num_classes)
    anchor_generator = anchor_generator_builder.build(
        ssd_config.anchor_generator)
    image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
    non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
        ssd_config.post_processing)
    (classification_loss, localization_loss, classification_weight,
     localization_weight, hard_example_miner,
     random_example_sampler) = losses_builder.build(ssd_config.loss)
    normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
    normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
    weight_regression_loss_by_score = (
        ssd_config.weight_regression_loss_by_score)

    target_assigner_instance = target_assigner.TargetAssigner(
        region_similarity_calculator,
        matcher,
        box_coder,
        negative_class_weight=negative_class_weight,
        weight_regression_loss_by_score=weight_regression_loss_by_score)

    expected_classification_loss_under_sampling = None
    if ssd_config.use_expected_classification_loss_under_sampling:
        expected_classification_loss_under_sampling = functools.partial(
            ops.expected_classification_loss_under_sampling,
            minimum_negative_sampling=ssd_config.minimum_negative_sampling,
            desired_negative_sampling_ratio=ssd_config.
            desired_negative_sampling_ratio)

    ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
    # BEGIN GOOGLE-INTERNAL
    # TODO(lzc): move ssd_mask_meta_arch to third party when it has decent
    # performance relative to a comparable Mask R-CNN model (b/112561592).
    predictor_config = ssd_config.box_predictor
    predict_instance_masks = False
    if predictor_config.WhichOneof(
            'box_predictor_oneof') == 'convolutional_box_predictor':
        predict_instance_masks = (
            predictor_config.convolutional_box_predictor.HasField('mask_head'))
    elif predictor_config.WhichOneof(
            'box_predictor_oneof'
    ) == 'weight_shared_convolutional_box_predictor':
        predict_instance_masks = (
            predictor_config.weight_shared_convolutional_box_predictor.
            HasField('mask_head'))
    if predict_instance_masks:
        ssd_meta_arch_fn = ssd_mask_meta_arch.SSDMaskMetaArch
    # END GOOGLE-INTERNAL

    return ssd_meta_arch_fn(
        is_training=is_training,
        anchor_generator=anchor_generator,
        box_predictor=ssd_box_predictor,
        box_coder=box_coder,
        feature_extractor=feature_extractor,
        encode_background_as_zeros=encode_background_as_zeros,
        image_resizer_fn=image_resizer_fn,
        non_max_suppression_fn=non_max_suppression_fn,
        score_conversion_fn=score_conversion_fn,
        classification_loss=classification_loss,
        localization_loss=localization_loss,
        classification_loss_weight=classification_weight,
        localization_loss_weight=localization_weight,
        normalize_loss_by_num_matches=normalize_loss_by_num_matches,
        hard_example_miner=hard_example_miner,
        target_assigner_instance=target_assigner_instance,
        add_summaries=add_summaries,
        normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
        add_background_class=add_background_class,
        random_example_sampler=random_example_sampler,
        expected_classification_loss_under_sampling=
        expected_classification_loss_under_sampling)
Ejemplo n.º 11
0
def _build_ssd_model(ssd_config, is_training, add_summaries,
                     add_background_class=True):
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.
    add_background_class: Whether to add an implicit background class to one-hot
      encodings of groundtruth labels. Set to false if using groundtruth labels
      with an explicit background class or using multiclass scores instead of
      truth in the case of distillation.
  Returns:
    SSDMetaArch based on the config.

  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
  feature_extractor = _build_ssd_feature_extractor(
      feature_extractor_config=ssd_config.feature_extractor,
      is_training=is_training)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
  negative_class_weight = ssd_config.negative_class_weight
  ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                  ssd_config.box_predictor,
                                                  is_training, num_classes)
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight,
   hard_example_miner) = losses_builder.build(ssd_config.loss)
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize

  return ssd_meta_arch.SSDMetaArch(
      is_training,
      anchor_generator,
      ssd_box_predictor,
      box_coder,
      feature_extractor,
      matcher,
      region_similarity_calculator,
      encode_background_as_zeros,
      negative_class_weight,
      image_resizer_fn,
      non_max_suppression_fn,
      score_conversion_fn,
      classification_loss,
      localization_loss,
      classification_weight,
      localization_weight,
      normalize_loss_by_num_matches,
      hard_example_miner,
      add_summaries=add_summaries,
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
      add_background_class=add_background_class)
Ejemplo n.º 12
0
def _build_lstm_model(ssd_config, lstm_config, is_training):
  """Builds an LSTM detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      LSTMSSDMetaArch.
    lstm_config: LstmModel config proto that specifies LSTM train/eval configs.
    is_training: True if this model is being built for training purposes.

  Returns:
    LSTMSSDMetaArch based on the config.
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map), or if lstm_config.interleave_strategy is not recognized.
    ValueError: If unroll_length is not specified in the config file.
  """
  feature_extractor = _build_lstm_feature_extractor(
      ssd_config.feature_extractor, is_training, lstm_config)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)

  num_classes = ssd_config.num_classes
  ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                  ssd_config.box_predictor,
                                                  is_training, num_classes)
  anchor_generator = anchor_generator_builder.build(ssd_config.anchor_generator)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight, miner, _, _) = losses_builder.build(ssd_config.loss)

  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
  negative_class_weight = ssd_config.negative_class_weight

  # Extra configs for lstm unroll length.
  unroll_length = None
  if 'lstm' in ssd_config.feature_extractor.type:
    if is_training:
      unroll_length = lstm_config.train_unroll_length
    else:
      unroll_length = lstm_config.eval_unroll_length
  if unroll_length is None:
    raise ValueError('No unroll length found in the config file')

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
      negative_class_weight=negative_class_weight)

  lstm_model = lstm_ssd_meta_arch.LSTMSSDMetaArch(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=miner,
      unroll_length=unroll_length,
      target_assigner_instance=target_assigner_instance)

  return lstm_model
Ejemplo n.º 13
0
def _build_lstm_model(ssd_config, lstm_config, is_training):
  """Builds an LSTM detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      LSTMMetaArch.
    lstm_config: LstmModel config proto that specifies LSTM train/eval configs.
    is_training: True if this model is being built for training purposes.

  Returns:
    LSTMMetaArch based on the config.
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map), or if lstm_config.interleave_strategy is not recognized.
    ValueError: If unroll_length is not specified in the config file.
  """
  feature_extractor = _build_lstm_feature_extractor(
      ssd_config.feature_extractor, is_training, lstm_config.lstm_state_depth)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)

  num_classes = ssd_config.num_classes
  ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                  ssd_config.box_predictor,
                                                  is_training, num_classes)
  anchor_generator = anchor_generator_builder.build(ssd_config.anchor_generator)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight, miner, _, _) = losses_builder.build(ssd_config.loss)

  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
  negative_class_weight = ssd_config.negative_class_weight

  # Extra configs for lstm unroll length.
  unroll_length = None
  if 'lstm' in ssd_config.feature_extractor.type:
    if is_training:
      unroll_length = lstm_config.train_unroll_length
    else:
      unroll_length = lstm_config.eval_unroll_length
  if unroll_length is None:
    raise ValueError('No unroll length found in the config file')

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
      negative_class_weight=negative_class_weight)

  lstm_model = lstm_meta_arch.LSTMMetaArch(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=miner,
      unroll_length=unroll_length,
      target_assigner_instance=target_assigner_instance)

  return lstm_model
Ejemplo n.º 14
0
def _build_ssd_model(ssd_config, is_training):
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.

  Returns:
    SSDMetaArch based on the config.
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes  #number of clases 

  # Feature extractor
  feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor,      #we use ssd_mobilenet_v1 as the feature extractor 
                                                   is_training)    #set the class in ssd_mobilenr_v1_feature_extractor amd ssd_meta+arch.py 

#when taking the regression loss we are working with some transorfmation. That means our predictors will predict 4 cordinates and those codinates should be regressed with some kind embedding which was made with ground truth boxes and default boxes , then after getting those we docode them for real images 


  box_coder = box_coder_builder.build(ssd_config.box_coder) #set en encoding w.r.t ground truth boxes and achor boxes . The output creating with this object will then regressed with the predicted onece. chenck equation 2 in the ssd paper 
  matcher = matcher_builder.build(ssd_config.matcher) #matching the predicted to ground trunth- Builds a matcher object based on the matcher config
#in obove object matching is done with default boxes and ground truth boxes , that's how xij value in the paper obtained . 

  region_similarity_calculator = sim_calc.build(         #how to calculate the similarity parameter is iou .
      ssd_config.similarity_calculator)

  ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,    #This will take care of the convolutional kernal 
                                                  ssd_config.box_predictor,    
                                                  is_training, num_classes)  #this returns a box_predictor object 


  anchor_generator = anchor_generator_builder.build(         #pass an instance or object where we can create ancho boxes for differen featuremaps
      ssd_config.anchor_generator)

  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)    #this is imortatnt  we use   fixed_shape_resizer

  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(   #this is to work with NMS supression  output
      ssd_config.post_processing)     #score conversion function will convert logits to probabilities 

  (classification_loss, localization_loss, classification_weight,
   localization_weight,
   hard_example_miner) = losses_builder.build(ssd_config.loss)           #now the loss for hard examples  these outputs are objects 

  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches # we devide by the matching acnhorboxes 

  return ssd_meta_arch.SSDMetaArch(        #here we initialized a object of ssd_meta_arch which will be used in trainign 
      is_training,
      anchor_generator,
      ssd_box_predictor,
      box_coder,
      feature_extractor,
      matcher,
      region_similarity_calculator,
      image_resizer_fn,
      non_max_suppression_fn,
      score_conversion_fn,
      classification_loss,
      localization_loss,
      classification_weight,
      localization_weight,
      normalize_loss_by_num_matches,
      hard_example_miner)
Ejemplo n.º 15
0
def _build_ssd_model(ssd_config,
                     is_training,
                     add_summaries,
                     add_background_class=True):
    """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.
    add_background_class: Whether to add an implicit background class to one-hot
      encodings of groundtruth labels. Set to false if using groundtruth labels
      with an explicit background class or using multiclass scores instead of
      truth in the case of distillation.
  Returns:
    SSDMetaArch based on the config.

  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
    num_classes = ssd_config.num_classes

    # Feature extractor
    feature_extractor = _build_ssd_feature_extractor(
        feature_extractor_config=ssd_config.feature_extractor,
        is_training=is_training)

    box_coder = box_coder_builder.build(ssd_config.box_coder)
    matcher = matcher_builder.build(ssd_config.matcher)
    region_similarity_calculator = sim_calc.build(
        ssd_config.similarity_calculator)
    encode_background_as_zeros = ssd_config.encode_background_as_zeros
    negative_class_weight = ssd_config.negative_class_weight
    ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                    ssd_config.box_predictor,
                                                    is_training, num_classes)
    anchor_generator = anchor_generator_builder.build(
        ssd_config.anchor_generator)
    image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
    non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
        ssd_config.post_processing)
    (classification_loss, localization_loss, classification_weight,
     localization_weight, hard_example_miner,
     random_example_sampler) = losses_builder.build(ssd_config.loss)
    normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
    normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize

    return ssd_meta_arch.SSDMetaArch(
        is_training,
        anchor_generator,
        ssd_box_predictor,
        box_coder,
        feature_extractor,
        matcher,
        region_similarity_calculator,
        encode_background_as_zeros,
        negative_class_weight,
        image_resizer_fn,
        non_max_suppression_fn,
        score_conversion_fn,
        classification_loss,
        localization_loss,
        classification_weight,
        localization_weight,
        normalize_loss_by_num_matches,
        hard_example_miner,
        add_summaries=add_summaries,
        normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
        add_background_class=add_background_class,
        random_example_sampler=random_example_sampler)
Ejemplo n.º 16
0
def _build_ssd_model(ssd_config, is_training, add_summaries):
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.
  Returns:
    SSDMetaArch based on the config.

  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
  feature_extractor = _build_ssd_feature_extractor(
      feature_extractor_config=ssd_config.feature_extractor,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      is_training=is_training)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
  negative_class_weight = ssd_config.negative_class_weight
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
        conv_hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight, hard_example_miner,
   random_example_sampler) = losses_builder.build(ssd_config.loss)
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
  weight_regression_loss_by_score = (ssd_config.weight_regression_loss_by_score)

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
      negative_class_weight=negative_class_weight,
      weight_regression_loss_by_score=weight_regression_loss_by_score)

  expected_classification_loss_under_sampling = None
  if ssd_config.use_expected_classification_loss_under_sampling:
    expected_classification_loss_under_sampling = functools.partial(
        ops.expected_classification_loss_under_sampling,
        min_num_negative_samples=ssd_config.min_num_negative_samples,
        desired_negative_sampling_ratio=ssd_config.
        desired_negative_sampling_ratio)

  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
      target_assigner_instance=target_assigner_instance,
      add_summaries=add_summaries,
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
      add_background_class=ssd_config.add_background_class,
      random_example_sampler=random_example_sampler,
      expected_classification_loss_under_sampling=
      expected_classification_loss_under_sampling)
Ejemplo n.º 17
0
def _build_ssd_model(ssd_config, is_training, add_summaries):
    """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.
  Returns:
    SSDMetaArch based on the config.

  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
    num_classes = ssd_config.num_classes

    # Feature extractor
    feature_extractor = _build_ssd_feature_extractor(
        feature_extractor_config=ssd_config.feature_extractor,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        is_training=is_training)

    box_coder = box_coder_builder.build(ssd_config.box_coder)
    matcher = matcher_builder.build(ssd_config.matcher)
    region_similarity_calculator = sim_calc.build(
        ssd_config.similarity_calculator)
    encode_background_as_zeros = ssd_config.encode_background_as_zeros
    negative_class_weight = ssd_config.negative_class_weight
    anchor_generator = anchor_generator_builder.build(
        ssd_config.anchor_generator)
    if feature_extractor.is_keras_model:
        ssd_box_predictor = box_predictor_builder.build_keras(
            hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
            freeze_batchnorm=ssd_config.freeze_batchnorm,
            inplace_batchnorm_update=False,
            num_predictions_per_location_list=anchor_generator.
            num_anchors_per_location(),
            box_predictor_config=ssd_config.box_predictor,
            is_training=is_training,
            num_classes=num_classes,
            add_background_class=ssd_config.add_background_class)
    else:
        ssd_box_predictor = box_predictor_builder.build(
            hyperparams_builder.build, ssd_config.box_predictor, is_training,
            num_classes, ssd_config.add_background_class)
    image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
    non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
        ssd_config.post_processing)
    (classification_loss, localization_loss, classification_weight,
     localization_weight, hard_example_miner, random_example_sampler,
     expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
    normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
    normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize

    equalization_loss_config = ops.EqualizationLossConfig(
        weight=ssd_config.loss.equalization_loss.weight,
        exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)

    target_assigner_instance = target_assigner.TargetAssigner(
        region_similarity_calculator,
        matcher,
        box_coder,
        negative_class_weight=negative_class_weight)

    ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
    kwargs = {}

    return ssd_meta_arch_fn(
        is_training=is_training,
        anchor_generator=anchor_generator,
        box_predictor=ssd_box_predictor,
        box_coder=box_coder,
        feature_extractor=feature_extractor,
        encode_background_as_zeros=encode_background_as_zeros,
        image_resizer_fn=image_resizer_fn,
        non_max_suppression_fn=non_max_suppression_fn,
        score_conversion_fn=score_conversion_fn,
        classification_loss=classification_loss,
        localization_loss=localization_loss,
        classification_loss_weight=classification_weight,
        localization_loss_weight=localization_weight,
        normalize_loss_by_num_matches=normalize_loss_by_num_matches,
        hard_example_miner=hard_example_miner,
        target_assigner_instance=target_assigner_instance,
        add_summaries=add_summaries,
        normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
        add_background_class=ssd_config.add_background_class,
        explicit_background_class=ssd_config.explicit_background_class,
        random_example_sampler=random_example_sampler,
        expected_loss_weights_fn=expected_loss_weights_fn,
        use_confidences_as_targets=ssd_config.use_confidences_as_targets,
        implicit_example_weight=ssd_config.implicit_example_weight,
        equalization_loss_config=equalization_loss_config,
        return_raw_detections_during_predict=(
            ssd_config.return_raw_detections_during_predict),
        **kwargs)
Ejemplo n.º 18
0
f.close()
num_classes = 20
groundtruth_class = tf.get_variable('groundtruth_class', shape=[24, 5, 20])
groundtruth_box = tf.get_variable('groundtruth_box', shape=[24, 5, 4])

groundtruth_classes_with_background_list = [
    tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
    for one_hot_encoding in tf.unstack(groundtruth_class)
]
groundtruth_boxlists = [
    box_list.BoxList(boxes) for boxes in tf.unstack(groundtruth_box)
]

# construct models
box_coder = box_coder_builder.build(model.ssd.box_coder)
matcher = matcher_builder.build(model.ssd.matcher)
region_similarity_calculator = sim_calc_builder.build(
    model.ssd.similarity_calculator)
anchor_generator = anchor_generator_builder.build(model.ssd.anchor_generator)
(classification_loss, localization_loss, classification_weight,
 localization_weight,
 hard_example_miner) = losses_builder.build(model.ssd.loss)
image_resizer_fn = image_resizer_builder.build(model.ssd.image_resizer)
non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
    model.ssd.post_processing)
(classification_loss, localization_loss, classification_weight,
 localization_weight,
 hard_example_miner) = losses_builder.build(model.ssd.loss)
normalize_loss_by_num_matches = model.ssd.normalize_loss_by_num_matches
matcher = matcher_builder.build(model.ssd.matcher)
unmatched_cls_target = tf.constant([1] + num_classes * [0], tf.float32)