def test_get_boxes_with_five_classes(self):
     image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
     mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
         is_training=False,
         num_classes=5,
         fc_hyperparams_fn=self._build_arg_scope_with_hyperparams(),
         use_dropout=False,
         dropout_keep_prob=0.5,
         box_code_size=4,
     )
     box_predictions = mask_box_predictor.predict(
         [image_features],
         num_predictions_per_location=[1],
         scope='BoxPredictor')
     box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
     class_predictions_with_background = box_predictions[
         box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
     init_op = tf.global_variables_initializer()
     with self.test_session() as sess:
         sess.run(init_op)
         (box_encodings_shape,
          class_predictions_with_background_shape) = sess.run([
              tf.shape(box_encodings),
              tf.shape(class_predictions_with_background)
          ])
         self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4])
         self.assertAllEqual(class_predictions_with_background_shape,
                             [2, 1, 6])
Ejemplo n.º 2
0
 def test_value_error_on_predict_instance_masks_with_no_conv_hyperparms(self):
   with self.assertRaises(ValueError):
     box_predictor.MaskRCNNBoxPredictor(
         is_training=False,
         num_classes=5,
         fc_hyperparams=self._build_arg_scope_with_hyperparams(),
         use_dropout=False,
         dropout_keep_prob=0.5,
         box_code_size=4,
         predict_instance_masks=True)
Ejemplo n.º 3
0
 def test_do_not_return_instance_masks_and_keypoints_without_request(self):
   image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
   mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
       is_training=False,
       num_classes=5,
       fc_hyperparams=self._build_arg_scope_with_hyperparams(),
       use_dropout=False,
       dropout_keep_prob=0.5,
       box_code_size=4)
   box_predictions = mask_box_predictor.predict(
       image_features, num_predictions_per_location=1, scope='BoxPredictor')
   self.assertEqual(len(box_predictions), 2)
   self.assertTrue(box_predictor.BOX_ENCODINGS in box_predictions)
   self.assertTrue(box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND
                   in box_predictions)
Ejemplo n.º 4
0
 def test_get_instance_masks(self):
   image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
   mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
       is_training=False,
       num_classes=5,
       fc_hyperparams=self._build_arg_scope_with_hyperparams(),
       use_dropout=False,
       dropout_keep_prob=0.5,
       box_code_size=4,
       conv_hyperparams=self._build_arg_scope_with_hyperparams(
           op_type=hyperparams_pb2.Hyperparams.CONV),
       predict_instance_masks=True)
   box_predictions = mask_box_predictor.predict(
       image_features, num_predictions_per_location=1, scope='BoxPredictor')
   mask_predictions = box_predictions[box_predictor.MASK_PREDICTIONS]
   self.assertListEqual([2, 1, 5, 14, 14],
                        mask_predictions.get_shape().as_list())
def build(argscope_fn, box_predictor_config, is_training, num_classes):
  """Builds box predictor based on the configuration.

  Builds box predictor based on the configuration. See box_predictor.proto for
  configurable options. Also, see box_predictor.py for more details.

  Args:
    argscope_fn: A function that takes the following inputs:
        * hyperparams_pb2.Hyperparams proto
        * a boolean indicating if the model is in training mode.
      and returns a tf slim argscope for Conv and FC hyperparameters.
    box_predictor_config: box_predictor_pb2.BoxPredictor proto containing
      configuration.
    is_training: Whether the models is in training mode.
    num_classes: Number of classes to predict.

  Returns:
    box_predictor: box_predictor.BoxPredictor object.

  Raises:
    ValueError: On unknown box predictor.
  """
  if not isinstance(box_predictor_config, box_predictor_pb2.BoxPredictor):
    raise ValueError('box_predictor_config not of type '
                     'box_predictor_pb2.BoxPredictor.')

  box_predictor_oneof = box_predictor_config.WhichOneof('box_predictor_oneof')

  if  box_predictor_oneof == 'convolutional_box_predictor':
    conv_box_predictor = box_predictor_config.convolutional_box_predictor
    conv_hyperparams = argscope_fn(conv_box_predictor.conv_hyperparams,
                                   is_training)
    box_predictor_object = box_predictor.ConvolutionalBoxPredictor(
        is_training=is_training,
        num_classes=num_classes,
        conv_hyperparams=conv_hyperparams,
        min_depth=conv_box_predictor.min_depth,
        max_depth=conv_box_predictor.max_depth,
        num_layers_before_predictor=(conv_box_predictor.
                                     num_layers_before_predictor),
        use_dropout=conv_box_predictor.use_dropout,
        dropout_keep_prob=conv_box_predictor.dropout_keep_probability,
        kernel_size=conv_box_predictor.kernel_size,
        box_code_size=conv_box_predictor.box_code_size,
        apply_sigmoid_to_scores=conv_box_predictor.apply_sigmoid_to_scores)
    return box_predictor_object

  if box_predictor_oneof == 'mask_rcnn_box_predictor':
    mask_rcnn_box_predictor = box_predictor_config.mask_rcnn_box_predictor
    fc_hyperparams = argscope_fn(mask_rcnn_box_predictor.fc_hyperparams,
                                 is_training)
    conv_hyperparams = None
    if mask_rcnn_box_predictor.HasField('conv_hyperparams'):
      conv_hyperparams = argscope_fn(mask_rcnn_box_predictor.conv_hyperparams,
                                     is_training)
    box_predictor_object = box_predictor.MaskRCNNBoxPredictor(
        is_training=is_training,
        num_classes=num_classes,
        fc_hyperparams=fc_hyperparams,
        use_dropout=mask_rcnn_box_predictor.use_dropout,
        dropout_keep_prob=mask_rcnn_box_predictor.dropout_keep_probability,
        box_code_size=mask_rcnn_box_predictor.box_code_size,
        conv_hyperparams=conv_hyperparams,
        predict_instance_masks=mask_rcnn_box_predictor.predict_instance_masks,
        mask_prediction_conv_depth=(mask_rcnn_box_predictor.
                                    mask_prediction_conv_depth),
        predict_keypoints=mask_rcnn_box_predictor.predict_keypoints)
    return box_predictor_object

  if box_predictor_oneof == 'rfcn_box_predictor':
    rfcn_box_predictor = box_predictor_config.rfcn_box_predictor
    conv_hyperparams = argscope_fn(rfcn_box_predictor.conv_hyperparams,
                                   is_training)
    box_predictor_object = box_predictor.RfcnBoxPredictor(
        is_training=is_training,
        num_classes=num_classes,
        conv_hyperparams=conv_hyperparams,
        crop_size=[rfcn_box_predictor.crop_height,
                   rfcn_box_predictor.crop_width],
        num_spatial_bins=[rfcn_box_predictor.num_spatial_bins_height,
                          rfcn_box_predictor.num_spatial_bins_width],
        depth=rfcn_box_predictor.depth,
        box_code_size=rfcn_box_predictor.box_code_size)
    return box_predictor_object
  raise ValueError('Unknown box predictor: {}'.format(box_predictor_oneof))
Ejemplo n.º 6
0
def build(argscope_fn, box_predictor_config, is_training, num_classes):
    """Builds box predictor based on the configuration.

  Builds box predictor based on the configuration. See box_predictor.proto for
  configurable options. Also, see box_predictor.py for more details.

  Args:
    argscope_fn: A function that takes the following inputs:
        * hyperparams_pb2.Hyperparams proto
        * a boolean indicating if the model is in training mode.
      and returns a tf slim argscope for Conv and FC hyperparameters.
    box_predictor_config: box_predictor_pb2.BoxPredictor proto containing
      configuration.
    is_training: Whether the models is in training mode.
    num_classes: Number of classes to predict.

  Returns:
    box_predictor: box_predictor.BoxPredictor object.

  Raises:
    ValueError: On unknown box predictor.
  """
    if not isinstance(box_predictor_config, box_predictor_pb2.BoxPredictor):
        raise ValueError('box_predictor_config not of type '
                         'box_predictor_pb2.BoxPredictor.')

    box_predictor_oneof = box_predictor_config.WhichOneof(
        'box_predictor_oneof')  #not giben in the parameter

    if box_predictor_oneof == 'convolutional_box_predictor':  #we don't have this(faster RCNN) . I think this used for SSD
        conv_box_predictor = box_predictor_config.convolutional_box_predictor  #get the params
        conv_hyperparams = argscope_fn(
            conv_box_predictor.
            conv_hyperparams,  #converting the convolution hyper params needed for the additional conv
            is_training
        )  #convolution and making help to make the arg scope . done with  hyperparametr_builder.build

        #This is what following object can do   : Take high level image feature map as input and produce two predictions,
        #(1) a tensor encoding box locations, and
        #(2) a tensor encoding classes for each box.  - from the box_predictor.py script
        #These components are passed directly to loss functions

        box_predictor_object = box_predictor.ConvolutionalBoxPredictor(  #Initialize the boxpredictor class 
            is_training=is_training,
            num_classes=num_classes,
            conv_hyperparams=
            conv_hyperparams,  #above slim arg scope which have weight , operations etc 
            min_depth=conv_box_predictor.min_depth,
            max_depth=conv_box_predictor.max_depth,
            num_layers_before_predictor=(
                conv_box_predictor.  #how many layers before the predictoot 
                num_layers_before_predictor),
            use_dropout=conv_box_predictor.use_dropout,
            dropout_keep_prob=conv_box_predictor.dropout_keep_probability,
            kernel_size=conv_box_predictor.kernel_size,
            box_code_size=conv_box_predictor.
            box_code_size,  #what is this size of the encoding ??????????????
            apply_sigmoid_to_scores=conv_box_predictor.apply_sigmoid_to_scores)
        return box_predictor_object  #retunrs this  since box _predictor class has many functiosn

    if box_predictor_oneof == 'mask_rcnn_box_predictor':  #this is what we have for faster Rcnn
        mask_rcnn_box_predictor = box_predictor_config.mask_rcnn_box_predictor  #get the hyperparams
        fc_hyperparams = argscope_fn(
            mask_rcnn_box_predictor.
            fc_hyperparams,  #this is basically getting fully connected params in order to predict 
            is_training)
        conv_hyperparams = None
        if mask_rcnn_box_predictor.HasField(
                'conv_hyperparams'):  #don't have one yet
            conv_hyperparams = argscope_fn(
                mask_rcnn_box_predictor.
                conv_hyperparams,  #assigning hyper params 
                is_training)
        box_predictor_object = box_predictor.MaskRCNNBoxPredictor(  #this create a object from box_predictor class which use to initialize thing ss 
            is_training=is_training,
            num_classes=num_classes,
            fc_hyperparams=fc_hyperparams,
            use_dropout=mask_rcnn_box_predictor.use_dropout,
            dropout_keep_prob=mask_rcnn_box_predictor.dropout_keep_probability,
            box_code_size=mask_rcnn_box_predictor.box_code_size,
            conv_hyperparams=conv_hyperparams,
            predict_instance_masks=mask_rcnn_box_predictor.
            predict_instance_masks,
            mask_prediction_conv_depth=(
                mask_rcnn_box_predictor.mask_prediction_conv_depth),
            predict_keypoints=mask_rcnn_box_predictor.predict_keypoints)
        return box_predictor_object

    if box_predictor_oneof == 'rfcn_box_predictor':  #if rfcn we get thus
        rfcn_box_predictor = box_predictor_config.rfcn_box_predictor
        conv_hyperparams = argscope_fn(
            rfcn_box_predictor.
            conv_hyperparams,  #then we get this slim.arguments 
            is_training)
        box_predictor_object = box_predictor.RfcnBoxPredictor(  #again this is for rfcn same as above 
            is_training=is_training,
            num_classes=num_classes,
            conv_hyperparams=conv_hyperparams,
            crop_size=[
                rfcn_box_predictor.crop_height, rfcn_box_predictor.crop_width
            ],
            num_spatial_bins=[
                rfcn_box_predictor.num_spatial_bins_height,
                rfcn_box_predictor.num_spatial_bins_width
            ],
            depth=rfcn_box_predictor.depth,
            box_code_size=rfcn_box_predictor.box_code_size)
        return box_predictor_object
    raise ValueError('Unknown box predictor: {}'.format(box_predictor_oneof))