def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithAlignedFeatureMaps(
            self):
        batch_size = 5
        height, width = 299, 299

        inputs = tf.random_uniform((batch_size, height, width, 3))
        _, end_points = inception.inception_resnet_v2_base(
            inputs, final_endpoint='PreAuxLogits', align_feature_maps=True)
        endpoints_shapes = {
            'Conv2d_1a_3x3': [5, 150, 150, 32],
            'Conv2d_2a_3x3': [5, 150, 150, 32],
            'Conv2d_2b_3x3': [5, 150, 150, 64],
            'MaxPool_3a_3x3': [5, 75, 75, 64],
            'Conv2d_3b_1x1': [5, 75, 75, 80],
            'Conv2d_4a_3x3': [5, 75, 75, 192],
            'MaxPool_5a_3x3': [5, 38, 38, 192],
            'Mixed_5b': [5, 38, 38, 320],
            'Mixed_6a': [5, 19, 19, 1088],
            'PreAuxLogits': [5, 19, 19, 1088]
        }

        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertTrue(endpoint_name in end_points)
            self.assertListEqual(
                end_points[endpoint_name].get_shape().as_list(),
                expected_shape)
    def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithOutputStrideEight(
            self):
        batch_size = 5
        height, width = 299, 299

        inputs = tf.random_uniform((batch_size, height, width, 3))
        _, end_points = inception.inception_resnet_v2_base(
            inputs, final_endpoint='PreAuxLogits', output_stride=8)
        endpoints_shapes = {
            'Conv2d_1a_3x3': [5, 149, 149, 32],
            'Conv2d_2a_3x3': [5, 147, 147, 32],
            'Conv2d_2b_3x3': [5, 147, 147, 64],
            'MaxPool_3a_3x3': [5, 73, 73, 64],
            'Conv2d_3b_1x1': [5, 73, 73, 80],
            'Conv2d_4a_3x3': [5, 71, 71, 192],
            'MaxPool_5a_3x3': [5, 35, 35, 192],
            'Mixed_5b': [5, 35, 35, 320],
            'Mixed_6a': [5, 33, 33, 1088],
            'PreAuxLogits': [5, 33, 33, 1088]
        }

        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertTrue(endpoint_name in end_points)
            self.assertListEqual(
                end_points[endpoint_name].get_shape().as_list(),
                expected_shape)
    def testBuildBaseNetwork(self):
        batch_size = 5
        height, width = 299, 299

        inputs = tf.random_uniform((batch_size, height, width, 3))
        net, end_points = inception.inception_resnet_v2_base(inputs)
        self.assertTrue(
            net.op.name.startswith('InceptionResnetV2/Conv2d_7b_1x1'))
        self.assertListEqual(net.get_shape().as_list(),
                             [batch_size, 8, 8, 1536])
        expected_endpoints = [
            'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
            'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
            'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a', 'PreAuxLogits',
            'Mixed_7a', 'Conv2d_7b_1x1'
        ]
        self.assertItemsEqual(end_points.keys(), expected_endpoints)
 def testBuildOnlyUptoFinalEndpoint(self):
     batch_size = 5
     height, width = 299, 299
     endpoints = [
         'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
         'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
         'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a', 'PreAuxLogits',
         'Mixed_7a', 'Conv2d_7b_1x1'
     ]
     for index, endpoint in enumerate(endpoints):
         with tf.Graph().as_default():
             inputs = tf.random_uniform((batch_size, height, width, 3))
             out_tensor, end_points = inception.inception_resnet_v2_base(
                 inputs, final_endpoint=endpoint)
             if endpoint != 'PreAuxLogits':
                 self.assertTrue(
                     out_tensor.op.name.startswith('InceptionResnetV2/' +
                                                   endpoint))
             self.assertItemsEqual(endpoints[:index + 1], end_points.keys())