Ejemplo n.º 1
0
 def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self):
     sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=True)
     self.assertIn('is_training',
                   sc[slim.arg_scope_func_key(slim.batch_norm)])
     sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=False)
     self.assertIn('is_training',
                   sc[slim.arg_scope_func_key(slim.batch_norm)])
     sc = mobilenet_v1.mobilenet_v1_arg_scope()
     self.assertIn('is_training',
                   sc[slim.arg_scope_func_key(slim.batch_norm)])
def build_model():
  """Build the mobilenet_v1 model for evaluation.

  Returns:
    g: graph with rewrites after insertion of quantization ops and batch norm
    folding.
    eval_ops: eval ops for inference.
    variables_to_restore: List of variables to restore from checkpoint.
  """
  g = tf.Graph()
  with g.as_default():
    inputs, labels = imagenet_input(is_training=False)

    scope = mobilenet_v1.mobilenet_v1_arg_scope(
        is_training=False, weight_decay=0.0)
    with slim.arg_scope(scope):
      logits, _ = mobilenet_v1.mobilenet_v1(
          inputs,
          is_training=False,
          depth_multiplier=FLAGS.depth_multiplier,
          num_classes=FLAGS.num_classes)

    if FLAGS.quantize:
      tf.contrib.quantize.create_eval_graph()

    eval_ops = metrics(logits, labels)

  return g, eval_ops
    def extract_features(self, preprocessed_inputs):
        """Extract features from preprocessed inputs.

		Args:
			preprocessed_inputs: a [batch, height, width, channels] float tensor
				representing a batch of images.

		Returns:
			feature_maps: a list of tensors where the ith tensor has shape
				[batch, height_i, width_i, depth_i]
		"""
        preprocessed_inputs = shape_utils.check_min_image_dim(
            min_dim=33, image_tensor=preprocessed_inputs)

        feature_map_layout = {
            'from_layer':
            ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', '', ''],
            'layer_depth': [-1, -1, 512, 256, 256, 128],
            'use_explicit_padding':
            self._use_explicit_padding,
            'use_depthwise':
            self._use_depthwise,
        }

        with tf.variable_scope('MobilenetV1',
                               reuse=self._reuse_weights) as scope:
            with slim.arg_scope(
                    mobilenet_v1.mobilenet_v1_arg_scope(
                        is_training=None, regularize_depthwise=True)):
                with (slim.arg_scope(self._conv_hyperparams_fn())
                      if self._override_base_feature_extractor_hyperparams else
                      context_manager.IdentityContextManager()):
                    # TODO(skligys): Enable fused batch norm once quantization supports it.
                    with slim.arg_scope([slim.batch_norm], fused=False):
                        _, image_features = mobilenet_v1.mobilenet_v1_base(
                            ops.pad_to_multiple(preprocessed_inputs,
                                                self._pad_to_multiple),
                            final_endpoint='Conv2d_13_pointwise',
                            min_depth=self._min_depth,
                            depth_multiplier=self._depth_multiplier,
                            use_explicit_padding=self._use_explicit_padding,
                            scope=scope)

            with slim.arg_scope(self._conv_hyperparams_fn()):
                # TODO(skligys): Enable fused batch norm once quantization supports it.
                with slim.arg_scope([slim.batch_norm], fused=False):
                    feature_maps = feature_map_generators.multi_resolution_feature_maps(
                        feature_map_layout=feature_map_layout,
                        depth_multiplier=self._depth_multiplier,
                        min_depth=self._min_depth,
                        insert_1x1_conv=True,
                        image_features=image_features)

        return feature_maps.values()
Ejemplo n.º 4
0
def build_model():
    """Builds graph for model to train with rewrites for quantization.

  Returns:
    g: Graph with fake quantization ops and batch norm folding suitable for
    training quantized weights.
    train_tensor: Train op for execution during training.
  """
    g = tf.Graph()
    with g.as_default(), tf.device(
            tf.train.replica_device_setter(FLAGS.ps_tasks)):
        inputs, labels = imagenet_input(is_training=True)
        with slim.arg_scope(
                mobilenet_v1.mobilenet_v1_arg_scope(is_training=True)):
            logits, _ = mobilenet_v1.mobilenet_v1(
                inputs,
                is_training=True,
                depth_multiplier=FLAGS.depth_multiplier,
                num_classes=FLAGS.num_classes)

        tf.losses.softmax_cross_entropy(labels, logits)

        # Call rewriter to produce graph with fake quant ops and folded batch norms
        # quant_delay delays start of quantization till quant_delay steps, allowing
        # for better model accuracy.
        if FLAGS.quantize:
            tf.contrib.quantize.create_training_graph(
                quant_delay=get_quant_delay())

        total_loss = tf.losses.get_total_loss(name='total_loss')
        # Configure the learning rate using an exponential decay.
        num_epochs_per_decay = 2.5
        imagenet_size = 1271167
        decay_steps = int(imagenet_size / FLAGS.batch_size *
                          num_epochs_per_decay)

        learning_rate = tf.train.exponential_decay(
            get_learning_rate(),
            tf.train.get_or_create_global_step(),
            decay_steps,
            _LEARNING_RATE_DECAY_FACTOR,
            staircase=True)
        opt = tf.train.GradientDescentOptimizer(learning_rate)

        train_tensor = slim.learning.create_train_op(total_loss, optimizer=opt)

    slim.summaries.add_scalar_summary(total_loss, 'total_loss', 'losses')
    slim.summaries.add_scalar_summary(learning_rate, 'learning_rate',
                                      'training')
    return g, train_tensor
    def _extract_proposal_features(self, preprocessed_inputs, scope):
        """Extracts first stage RPN features.

    Args:
      preprocessed_inputs: A [batch, height, width, channels] float32 tensor
        representing a batch of images.
      scope: A scope name.

    Returns:
      rpn_feature_map: A tensor with shape [batch, height, width, depth]
      activations: A dictionary mapping feature extractor tensor names to
        tensors

    Raises:
      InvalidArgumentError: If the spatial size of `preprocessed_inputs`
        (height or width) is less than 33.
      ValueError: If the created network is missing the required activation.
    """

        preprocessed_inputs.get_shape().assert_has_rank(4)
        preprocessed_inputs = shape_utils.check_min_image_dim(
            min_dim=33, image_tensor=preprocessed_inputs)

        with slim.arg_scope(
                mobilenet_v1.mobilenet_v1_arg_scope(
                    is_training=self._train_batch_norm,
                    weight_decay=self._weight_decay)):
            with tf.variable_scope('MobilenetV1',
                                   reuse=self._reuse_weights) as scope:
                params = {}
                if self._skip_last_stride:
                    params[
                        'conv_defs'] = _get_mobilenet_conv_no_last_stride_defs(
                            conv_depth_ratio_in_percentage=self.
                            _conv_depth_ratio_in_percentage)
                _, activations = mobilenet_v1.mobilenet_v1_base(
                    preprocessed_inputs,
                    final_endpoint='Conv2d_11_pointwise',
                    min_depth=self._min_depth,
                    depth_multiplier=self._depth_multiplier,
                    scope=scope,
                    **params)
        return activations['Conv2d_11_pointwise'], activations
    def _extract_box_classifier_features(self, proposal_feature_maps, scope):
        """Extracts second stage box classifier features.

    Args:
      proposal_feature_maps: A 4-D float tensor with shape
        [batch_size * self.max_num_proposals, crop_height, crop_width, depth]
        representing the feature map cropped to each proposal.
      scope: A scope name (unused).

    Returns:
      proposal_classifier_features: A 4-D float tensor with shape
        [batch_size * self.max_num_proposals, height, width, depth]
        representing box classifier features for each proposal.
    """
        net = proposal_feature_maps

        conv_depth = 1024
        if self._skip_last_stride:
            conv_depth_ratio = float(
                self._conv_depth_ratio_in_percentage) / 100.0
            conv_depth = int(float(conv_depth) * conv_depth_ratio)

        depth = lambda d: max(int(d * 1.0), 16)
        with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights):
            with slim.arg_scope(
                    mobilenet_v1.mobilenet_v1_arg_scope(
                        is_training=self._train_batch_norm,
                        weight_decay=self._weight_decay)):
                with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
                                    padding='SAME'):
                    net = slim.separable_conv2d(net,
                                                depth(conv_depth), [3, 3],
                                                depth_multiplier=1,
                                                stride=2,
                                                scope='Conv2d_12_pointwise')
                    return slim.separable_conv2d(net,
                                                 depth(conv_depth), [3, 3],
                                                 depth_multiplier=1,
                                                 stride=1,
                                                 scope='Conv2d_13_pointwise')
    def extract_features(self, preprocessed_inputs):
        """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
        preprocessed_inputs = shape_utils.check_min_image_dim(
            33, preprocessed_inputs)

        with tf.variable_scope('MobilenetV1',
                               reuse=self._reuse_weights) as scope:
            with slim.arg_scope(
                    mobilenet_v1.mobilenet_v1_arg_scope(
                        is_training=None, regularize_depthwise=True)):
                with (slim.arg_scope(self._conv_hyperparams_fn())
                      if self._override_base_feature_extractor_hyperparams else
                      context_manager.IdentityContextManager()):
                    _, image_features = mobilenet_v1.mobilenet_v1_base(
                        ops.pad_to_multiple(preprocessed_inputs,
                                            self._pad_to_multiple),
                        final_endpoint='Conv2d_13_pointwise',
                        min_depth=self._min_depth,
                        depth_multiplier=self._depth_multiplier,
                        use_explicit_padding=self._use_explicit_padding,
                        scope=scope)
            with slim.arg_scope(self._conv_hyperparams_fn()):
                feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
                    base_feature_map_depth=0,
                    num_layers=6,
                    image_features={
                        'image_features': image_features['Conv2d_11_pointwise']
                    })
        return feature_maps.values()
Ejemplo n.º 8
0
 def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self):
     sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)
     self.assertNotIn('is_training',
                      sc[slim.arg_scope_func_key(slim.batch_norm)])
Ejemplo n.º 9
0
    def extract_features(self, preprocessed_inputs):
        """Extract features from preprocessed inputs.

		Args:
			preprocessed_inputs: a [batch, height, width, channels] float tensor
				representing a batch of images.

		Returns:
			feature_maps: a list of tensors where the ith tensor has shape
				[batch, height_i, width_i, depth_i]

		Raises:
			ValueError: if image height or width are not 256 pixels.
		"""
        image_shape = preprocessed_inputs.get_shape()
        image_shape.assert_has_rank(4)
        image_height = image_shape[1].value
        image_width = image_shape[2].value

        if image_height is None or image_width is None:
            shape_assert = tf.Assert(
                tf.logical_and(tf.equal(tf.shape(preprocessed_inputs)[1], 256),
                               tf.equal(tf.shape(preprocessed_inputs)[2],
                                        256)),
                ['image size must be 256 in both height and width.'])
            with tf.control_dependencies([shape_assert]):
                preprocessed_inputs = tf.identity(preprocessed_inputs)
        elif image_height != 256 or image_width != 256:
            raise ValueError(
                'image size must be = 256 in both height and width;'
                ' image dim = %d,%d' % (image_height, image_width))

        feature_map_layout = {
            'from_layer':
            ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', ''],
            'layer_depth': [-1, -1, 512, 256, 256],
            'conv_kernel_size': [-1, -1, 3, 3, 2],
            'use_explicit_padding':
            self._use_explicit_padding,
            'use_depthwise':
            self._use_depthwise,
        }

        with tf.variable_scope('MobilenetV1',
                               reuse=self._reuse_weights) as scope:
            with slim.arg_scope(
                    mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)):
                with (slim.arg_scope(self._conv_hyperparams_fn())
                      if self._override_base_feature_extractor_hyperparams else
                      context_manager.IdentityContextManager()):
                    # TODO(skligys): Enable fused batch norm once quantization supports it.
                    with slim.arg_scope([slim.batch_norm], fused=False):
                        _, image_features = mobilenet_v1.mobilenet_v1_base(
                            ops.pad_to_multiple(preprocessed_inputs,
                                                self._pad_to_multiple),
                            final_endpoint='Conv2d_13_pointwise',
                            min_depth=self._min_depth,
                            depth_multiplier=self._depth_multiplier,
                            use_explicit_padding=self._use_explicit_padding,
                            scope=scope)
            with slim.arg_scope(self._conv_hyperparams_fn()):
                # TODO(skligys): Enable fused batch norm once quantization supports it.
                with slim.arg_scope([slim.batch_norm], fused=False):
                    feature_maps = feature_map_generators.multi_resolution_feature_maps(
                        feature_map_layout=feature_map_layout,
                        depth_multiplier=self._depth_multiplier,
                        min_depth=self._min_depth,
                        insert_1x1_conv=True,
                        image_features=image_features)

        #return feature_maps.values()
        return list(feature_maps.values())
Ejemplo n.º 10
0
  def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    with tf.variable_scope('MobilenetV1',
                           reuse=self._reuse_weights) as scope:
      with slim.arg_scope(
          mobilenet_v1.mobilenet_v1_arg_scope(
              is_training=None, regularize_depthwise=True)):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams
              else context_manager.IdentityContextManager()):
          _, image_features = mobilenet_v1.mobilenet_v1_base(
              ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
              final_endpoint='Conv2d_13_pointwise',
              min_depth=self._min_depth,
              depth_multiplier=self._depth_multiplier,
              conv_defs=self._conv_defs,
              use_explicit_padding=self._use_explicit_padding,
              scope=scope)

      depth_fn = lambda d: max(int(d * self._depth_multiplier), self._min_depth)
      with slim.arg_scope(self._conv_hyperparams_fn()):
        with tf.variable_scope('fpn', reuse=self._reuse_weights):
          feature_blocks = [
              'Conv2d_3_pointwise', 'Conv2d_5_pointwise', 'Conv2d_11_pointwise',
              'Conv2d_13_pointwise'
          ]
          base_fpn_max_level = min(self._fpn_max_level, 5)
          feature_block_list = []
          for level in range(self._fpn_min_level, base_fpn_max_level + 1):
            feature_block_list.append(feature_blocks[level - 2])
          fpn_features = feature_map_generators.fpn_top_down_feature_maps(
              [(key, image_features[key]) for key in feature_block_list],
              depth=depth_fn(self._additional_layer_depth),
              use_depthwise=self._use_depthwise,
              use_explicit_padding=self._use_explicit_padding)
          feature_maps = []
          for level in range(self._fpn_min_level, base_fpn_max_level + 1):
            feature_maps.append(fpn_features['top_down_{}'.format(
                feature_blocks[level - 2])])
          last_feature_map = fpn_features['top_down_{}'.format(
              feature_blocks[base_fpn_max_level - 2])]
          # Construct coarse features
          padding = 'VALID' if self._use_explicit_padding else 'SAME'
          kernel_size = 3
          for i in range(base_fpn_max_level + 1, self._fpn_max_level + 1):
            if self._use_depthwise:
              conv_op = functools.partial(
                  slim.separable_conv2d, depth_multiplier=1)
            else:
              conv_op = slim.conv2d
            if self._use_explicit_padding:
              last_feature_map = ops.fixed_padding(
                  last_feature_map, kernel_size)
            last_feature_map = conv_op(
                last_feature_map,
                num_outputs=depth_fn(self._additional_layer_depth),
                kernel_size=[kernel_size, kernel_size],
                stride=2,
                padding=padding,
                scope='bottom_up_Conv2d_{}'.format(i - base_fpn_max_level + 13))
            feature_maps.append(last_feature_map)
    return feature_maps