Ejemplo n.º 1
0
def remove_overlaps(boxes, classes, scores, marking_list):
    '''
    This function deletes the overlapping boxes that belong to the same crack class.
    It returns the boxes, classes and scores of the un-deleted (non-overlapping) boxes.
    '''
    boxes, classes, scores = remove_b1(boxes, classes, scores, marking_list)

    k = boxes.shape[0]
    boxes_ = boxes
    remove_list = []
    for i in range(k):
        if classes[
                i] == 6:  #not deleting the BC2/BC3 detections as they do not have overlaps
            continue
        for j in range(k):
            if classes[j] == 6:
                continue
            area1 = np_box_ops.area(np.array(([boxes_[j]])))
            area2 = np_box_ops.area(np.array(([boxes_[i]])))
            box1 = np_box_list.BoxList(np.array(([boxes_[j]])))
            box2 = np_box_list.BoxList(np.array(([boxes_[i]])))
            ioa1 = np.transpose(np_box_list_ops.ioa(box1, box2))
            ioa2 = np.transpose(np_box_list_ops.ioa(box2, box1))

            #A minimum overlap threshold to consider the overlapping boxes that need to be deleted
            if ioa1 > 0.65:
                #To check if its not the same detected box
                if ioa1 < 0.99:
                    if classes[i] not in [5, 6]:
                        #A check for overlaps using the ioa scores wrt (box1 , box2) and vice versa.
                        #This is to delete the box with most overlap
                        if abs(ioa1 - ioa2) <= 0.01:
                            if ioa1 > ioa2:
                                if i not in remove_list:
                                    if classes[i] == classes[j]:
                                        remove_list.append(i)
                            else:
                                if j not in remove_list:
                                    if classes[i] == classes[j]:
                                        remove_list.append(j)
                        else:
                            if classes[i] == classes[j]:
                                remove_list.append(i)
                    if classes[i] == classes[j] == 5:
                        remove_list.append(i)
                elif ioa1 >= 0.99:
                    if area1 != area2:
                        if classes[i] == classes[j]:
                            remove_list.append(i)

    boxes = np.delete(boxes, remove_list, 0)
    classes = np.delete(classes, remove_list, 0)
    scores = np.delete(scores, remove_list, 0)
    return boxes, classes, scores
Ejemplo n.º 2
0
 def testArea(self):
     areas = np_box_ops.area(self.boxes1)
     expected_areas = np.array([6.0, 5.0], dtype=float)
     self.assertAllClose(expected_areas, areas)
Ejemplo n.º 3
0
 def testArea(self):
   areas = np_box_ops.area(self.boxes1)
   expected_areas = np.array([6.0, 5.0], dtype=float)
   self.assertAllClose(expected_areas, areas)
Ejemplo n.º 4
0
 def __init__(self, class_array, prob_array, bbox_array):
     self.class_array = class_array
     self.prob_array = prob_array
     self.bbox_array = bbox_array
     self.bbox_center_array = get_centers(self.bbox_array)
     self.bbox_area_array = area(self.bbox_array)
Ejemplo n.º 5
0
def cracks(boxes, classes, scores, marking_list):
    left_wheelpath, right_wheelpath, non_wheelpath, left_center_path, right_center_path, left_non_wheelpath, right_non_wheelpath = wheelpath(
        marking_list)

    right_center_list_b2 = []
    left_center_list_b2 = []
    left_center_list_b3 = []
    right_center_list_b3 = []
    right_list_b = []
    left_list_b = []
    center_b = list()
    right_list_l = []
    left_list_l = []
    box_list_right_load = []
    box_list_left_load = []
    b1_box_list = list()
    b1_box_list_longi = list()
    b1_class_list = list()
    box_list_block = list()
    rm_list = list()
    flag_LC3 = 0
    flag_BC2 = 0
    flag_BC3 = 0
    box_left = np_box_list.BoxList(np.array(([left_wheelpath])))
    box_right = np_box_list.BoxList(np.array(([right_wheelpath])))
    box_non_wheel = np_box_list.BoxList(np.array(([non_wheelpath])))
    box_left_center = np_box_list.BoxList(np.array(([left_center_path])))
    box_right_center = np_box_list.BoxList(np.array(([right_center_path])))
    box_non_wheel_left = np_box_list.BoxList(np.array(([left_non_wheelpath])))
    box_non_wheel_right = np_box_list.BoxList(np.array(
        ([right_non_wheelpath])))

    for i in range(boxes.shape[0]):
        label = classes[i]
        box = boxes[i]
        box2 = np_box_list.BoxList(np.array(([box])))
        print('box2', box2)

        #Check for box overlaps with wheepaths and non-wheelpaths
        ioa_1 = np.transpose(np_box_list_ops.ioa(box_non_wheel,
                                                 box2))  #non-wheelpath
        ioa_2 = np.transpose(np_box_list_ops.ioa(box_left,
                                                 box2))  #Left wheelpath
        ioa_3 = np.transpose(np_box_list_ops.ioa(box_right,
                                                 box2))  #Right wheelpath
        ioa_4 = np.transpose(np_box_list_ops.ioa(box_left_center,
                                                 box2))  #Left center path
        ioa_5 = np.transpose(np_box_list_ops.ioa(box_right_center,
                                                 box2))  #Right center path
        ioa_7 = np.transpose(np_box_list_ops.ioa(box_non_wheel_left,
                                                 box2))  #Left nonwheelpath
        ioa_8 = np.transpose(np_box_list_ops.ioa(box_non_wheel_right,
                                                 box2))  #Right nonwheelpath

        if classes[i] == 3:
            ioa_6 = np.transpose(np_box_list_ops.ioa(box2,
                                                     box_non_wheel))  #LC3
            if ioa_6 > 0.8:
                flag_LC3 = 1
        if 3 not in classes:
            flag_LC3 = 1

        #Check detected load cracks in the non wheelpath and change the label to BC1
        if (ioa_1 > 0.8 or ioa_7 > 0.7) or ioa_8 > 0.7:
            if label in [1, 2, 3, 4]:
                classes[i] = 5

        #creating a list of BC1 boxes and classes
        if (classes[i] == 6 or classes[i] == 5):
            if classes[i] == 5:
                b1_box_list.append(boxes[i])
                b1_class_list.append(classes[i])

            #Calculate the area of the bbox
            area = np_box_ops.area(np.array(([box])))

            # appending the BC2/BC3 detections to left,right and center lists of the pavement dependig on their location and area.
            if classes[i] == 6:
                if ioa_4 > 0.7:
                    if area > 190000:
                        left_center_list_b2.append(classes[i])
                        #left_center_list_b2
                        box_list_block.append(boxes[i])

                    else:
                        left_center_list_b3.append(classes[i])
                        #left_center_list_b3
                        box_list_block.append(boxes[i])

                elif ioa_5 > 0.7:
                    if area > 190000:
                        right_center_list_b2.append(classes[i])
                        box_list_block.append(boxes[i])
                        #right_center_list_b2

                    else:
                        right_center_list_b3.append(classes[i])
                        #right_center_list_b3
                        box_list_block.append(boxes[i])

                #To check if the biggest box is in the center of the image
                if ((ioa_4 > 0.5 and ioa_5 > 0.5) or (area > 400000)):
                    if area > 200000:
                        if ioa_7 > 0.2 or ioa_8 > 0.2:
                            center_b.append(classes[i])

        #Check for load cracks
        else:
            #left_wheelpath
            if ioa_2 > 0.4:
                if classes[i] != 3:
                    left_list_l.append(classes[i])
                    box_list_left_load.append(boxes[i])

            #right_wheelpath
            elif ioa_3 > 0.4:
                if classes[i] != 3:
                    right_list_l.append(classes[i])
                    box_list_right_load.append(boxes[i])

            #special case LC3 with not much overlap because of wide box
            if classes[i] == 3:
                if ioa_2 > 0.3:
                    left_list_l.append(classes[i])
                    box_list_left_load.append(boxes[i])
                if ioa_3 > 0.3:
                    right_list_l.append(classes[i])
                    box_list_right_load.append(boxes[i])

    #Part of the code to post-process BC2/BC3 into BC2 and BC3 separately

    #check if LC4 is not present in detections
    if np.setdiff1d(classes, [1, 2, 3, 5, 6]).shape[0] == 0:
        if flag_LC3 == 1:

            #Checking if the nuumber of detected boxes is greater than 3
            if (len(left_center_list_b2 + left_center_list_b3 +
                    right_center_list_b2 + right_center_list_b3)) >= 4:
                if (len(left_center_list_b2 + left_center_list_b3) >= 1 and
                        len(right_center_list_b2 + right_center_list_b3) >= 1):
                    print('Block crack level 3 detected')
                    flag_BC3 = 1
                else:
                    print('Block crack level 2 detected')
                    flag_BC2 = 1

            #check if BC2 is detected wrt area of the detected box being bigger than BC3
            elif ((len(left_center_list_b2) != 0)
                  or (len(right_center_list_b2) != 0)):
                if len(center_b) >= 1:
                    print('Block crack level 2 detected')
                    flag_BC2 = 1

                #Checking if the nuumber of detected boxes is greater than or equal to 2
                elif (len(left_center_list_b2 + left_center_list_b3 +
                          right_center_list_b2 + right_center_list_b3)) >= 2:

                    #Check if blocks are detected in both left and right parts of the pavement
                    if (len(left_center_list_b2 + left_center_list_b3) >= 1
                            and len(right_center_list_b2 +
                                    right_center_list_b3) >= 1):
                        print('Block crack level 3 detected')
                        flag_BC3 = 1
                    else:
                        print('Block crack level 2 detected')
                        flag_BC2 = 1

                elif (len(left_center_list_b2 + left_center_list_b3 +
                          right_center_list_b2 + right_center_list_b3)) >= 1:
                    print('Block crack level 2 detected')
                    flag_BC2 = 1

            #Check for blocks detected only in one part of the pavement (R or L) >= 2
            elif len(left_center_list_b2 + left_center_list_b3) >= 2 or len(
                    right_center_list_b2 + right_center_list_b3) >= 2:
                #if 6 in classes:
                flag_BC2 = 1
                print('Block Crack Level 2 detected')

    # Part of the code to return crack extent calculation
    if not (flag_BC2 or flag_BC3):
        extent_right, extent_left, extent_b1 = extent(box_list_right_load,
                                                      box_list_left_load,
                                                      box_list_block,
                                                      b1_box_list, flag_BC2,
                                                      flag_BC3)

        left_list_l.sort()
        left_list_l.reverse()
        right_list_l.sort()
        right_list_l.reverse()

        if (left_list_l == [] and right_list_l == []):
            if extent_b1 != 0:
                return ('0', extent_left, '0', extent_right, 0, 0, '1',
                        extent_b1)
            else:
                return ('0', extent_left, '0', extent_right, 0, 0, 0, 0)
        elif left_list_l == []:
            if len(right_list_l) >= 2:
                right = str(right_list_l[0]) + ',' + str(right_list_l[1])
            else:
                right = str(right_list_l[0])
            if extent_b1 != 0:
                return (0, extent_left, right, extent_right, 0, 0, '1',
                        extent_b1)
            else:
                return (0, extent_left, right, extent_right, 0, 0, 0, 0)
        elif right_list_l == []:
            if len(left_list_l) >= 2:
                left = str(left_list_l[0]) + ',' + str(left_list_l[1])
            else:
                left = str(left_list_l[0])
            if extent_b1 != 0:
                return (left, extent_left, 0, extent_right, 0, 0, '1',
                        extent_b1)
            else:
                return (left, extent_left, 0, extent_right, 0, 0, 0, 0)
        else:
            if len(left_list_l) >= 2:
                left = str(left_list_l[0]) + ',' + str(left_list_l[1])
            else:
                left = str(left_list_l[0])
            if len(right_list_l) >= 2:
                right = str(right_list_l[0]) + ',' + str(right_list_l[1])
            else:
                right = str(right_list_l[0])
            if extent_b1 != 0:
                return (left, extent_left, right, extent_right, 0, 0, '1',
                        extent_b1)
            else:
                return (left, extent_left, right, extent_right, 0, 0, 0, 0)
    else:
        extent_block, extent_right, extent_left = extent(
            box_list_right_load, box_list_left_load, box_list_block,
            b1_box_list, flag_BC2, flag_BC3)

        left_list_l.sort()
        left_list_l.reverse()
        right_list_l.sort()
        right_list_l.reverse()
        if (left_list_l == [] and right_list_l == []):
            left = '0'
            right = '0'
        elif left_list_l == []:
            left = '0'
            if len(right_list_l) >= 2:
                right = str(right_list_l[0]) + ',' + str(right_list_l[1])
            else:
                right = str(right_list_l[0])
        elif right_list_l == []:
            right = '0'
            if len(left_list_l) >= 2:
                left = str(left_list_l[0]) + ',' + str(left_list_l[1])
            else:
                left = str(left_list_l[0])
        else:
            if len(left_list_l) >= 2:
                left = str(left_list_l[0]) + ',' + str(left_list_l[1])
            else:
                left = str(left_list_l[0])
            if len(right_list_l) >= 2:
                right = str(right_list_l[0]) + ',' + str(right_list_l[1])
            else:
                right = str(right_list_l[0])
        if flag_BC2:
            return (left, extent_left, right, extent_right, '2',
                    str(extent_block), '0', '0')
        else:
            return (left, extent_left, right, extent_right, '3',
                    str(extent_block), '0', '0')