Ejemplo n.º 1
0
def random_action_dist(synthetic_bandit_feedback) -> np.ndarray:
    n_actions = synthetic_bandit_feedback["n_actions"]
    evaluation_policy = Random(n_actions=n_actions, len_list=1)
    action_dist = evaluation_policy.compute_batch_action_dist(
        n_rounds=synthetic_bandit_feedback["n_rounds"]
    )
    return action_dist
Ejemplo n.º 2
0
        is_timeseries_split=is_timeseries_split,
    )
    # compute action distribution by evaluation policy
    if evaluation_policy == "bts":
        policy = BernoulliTS(
            n_actions=obd.n_actions,
            len_list=obd.len_list,
            is_zozotown_prior=
            True,  # replicate the policy in the ZOZOTOWN production
            campaign=campaign,
            random_state=random_state,
        )
    else:
        policy = Random(
            n_actions=obd.n_actions,
            len_list=obd.len_list,
            random_state=random_state,
        )
    action_dist_single_round = policy.compute_batch_action_dist(
        n_sim=n_sim_to_compute_action_dist)

    def process(b: int):
        # load the pre-trained regression model
        with open(reg_model_path / f"reg_model_{b}.pkl", "rb") as f:
            reg_model = pickle.load(f)
        with open(reg_model_path / f"reg_model_mrdr_{b}.pkl", "rb") as f:
            reg_model_mrdr = pickle.load(f)
        with open(reg_model_path / f"is_for_reg_model_{b}.pkl", "rb") as f:
            is_for_reg_model = pickle.load(f)
        # sample bootstrap samples from batch logged bandit feedback
        bandit_feedback = obd.sample_bootstrap_bandit_feedback(
Ejemplo n.º 3
0
 # estimate the mean reward function of the train set of synthetic bandit feedback with ML model
 regression_model = RegressionModel(
     n_actions=dataset.n_actions,
     action_context=dataset.action_context,
     base_model=base_model_dict[base_model_for_reg_model](
         **hyperparams[base_model_for_reg_model]),
 )
 estimated_rewards_by_reg_model = regression_model.fit_predict(
     context=bandit_feedback_train["context"],
     action=bandit_feedback_train["action"],
     reward=bandit_feedback_train["reward"],
     n_folds=3,  # 3-fold cross-fitting
     random_state=random_state,
 )
 # define random evaluation policy
 random_policy = Random(n_actions=dataset.n_actions,
                        random_state=random_state)
 # define evaluation policy using IPWLearner
 ipw_learner = IPWLearner(
     n_actions=dataset.n_actions,
     base_classifier=base_model_dict[base_model_for_evaluation_policy](
         **hyperparams[base_model_for_evaluation_policy]),
 )
 # define evaluation policy using NNPolicyLearner
 nn_policy_learner = NNPolicyLearner(
     n_actions=dataset.n_actions,
     dim_context=dim_context,
     off_policy_objective=ope_estimator_dict[ope_estimator].
     estimate_policy_value_tensor,
     hidden_layer_size=tuple((n_hidden for _ in range(n_layers))),
     activation=activation,
     solver=solver,
Ejemplo n.º 4
0
def main(cfg: DictConfig) -> None:
    print(cfg)
    logger.info(f"The current working directory is {Path().cwd()}")
    start_time = time.time()
    logger.info("initializing experimental condition..")

    # compared ope estimators
    lambdas = list(dict(cfg.estimator_hyperparams)["lambdas"])
    ope_estimators = [
        DoublyRobustWithShrinkage(lambda_=lam_,
                                  estimator_name=f"DRos ({lam_})")
        for lam_ in lambdas
    ] + [
        DoublyRobustWithShrinkageTuning(lambdas=lambdas,
                                        estimator_name="DRos (tuning)"),
    ]

    # configurations
    n_seeds = cfg.setting.n_seeds
    sample_size = cfg.setting.sample_size
    reg_model = cfg.setting.reg_model
    campaign = cfg.setting.campaign
    behavior_policy = cfg.setting.behavior_policy
    test_size = cfg.setting.test_size
    is_timeseries_split = cfg.setting.is_timeseries_split
    n_folds = cfg.setting.n_folds
    obd_path = (Path().cwd().parents[5] /
                "open_bandit_dataset" if cfg.setting.is_full_obd else None)
    random_state = cfg.setting.random_state
    np.random.seed(random_state)

    # define dataset
    dataset_ts = OpenBanditDataset(behavior_policy="bts",
                                   campaign=campaign,
                                   data_path=obd_path)
    dataset_ur = OpenBanditDataset(behavior_policy="random",
                                   campaign=campaign,
                                   data_path=obd_path)

    # prepare logged bandit feedback and evaluation policies
    if behavior_policy == "random":
        if is_timeseries_split:
            bandit_feedback_ur = dataset_ur.obtain_batch_bandit_feedback(
                test_size=test_size,
                is_timeseries_split=True,
            )[0]
        else:
            bandit_feedback_ur = dataset_ur.obtain_batch_bandit_feedback()
        bandit_feedbacks = [bandit_feedback_ur]
        # obtain the ground-truth policy value
        ground_truth_ts = OpenBanditDataset.calc_on_policy_policy_value_estimate(
            behavior_policy="bts",
            campaign=campaign,
            data_path=obd_path,
            test_size=test_size,
            is_timeseries_split=is_timeseries_split,
        )
        # obtain action choice probabilities and define evaluation policies
        policy_ts = BernoulliTS(
            n_actions=dataset_ts.n_actions,
            len_list=dataset_ts.len_list,
            random_state=random_state,
            is_zozotown_prior=True,
            campaign=campaign,
        )
        action_dist_ts = policy_ts.compute_batch_action_dist(n_rounds=1000000)
        evaluation_policies = [(ground_truth_ts, action_dist_ts)]
    else:
        if is_timeseries_split:
            bandit_feedback_ts = dataset_ts.obtain_batch_bandit_feedback(
                test_size=test_size,
                is_timeseries_split=True,
            )[0]
        else:
            bandit_feedback_ts = dataset_ts.obtain_batch_bandit_feedback()
        bandit_feedbacks = [bandit_feedback_ts]
        # obtain the ground-truth policy value
        ground_truth_ur = OpenBanditDataset.calc_on_policy_policy_value_estimate(
            behavior_policy="random",
            campaign=campaign,
            data_path=obd_path,
            test_size=test_size,
            is_timeseries_split=is_timeseries_split,
        )
        # obtain action choice probabilities and define evaluation policies
        policy_ur = Random(
            n_actions=dataset_ur.n_actions,
            len_list=dataset_ur.len_list,
            random_state=random_state,
        )
        action_dist_ur = policy_ur.compute_batch_action_dist(n_rounds=1000000)
        evaluation_policies = [(ground_truth_ur, action_dist_ur)]

    # regression models used in ope estimators
    hyperparams = dict(cfg.reg_model_hyperparams)[reg_model]
    regression_models = [reg_model_dict[reg_model](**hyperparams)]

    # define an evaluator class
    evaluator = InterpretableOPEEvaluator(
        random_states=np.arange(n_seeds),
        bandit_feedbacks=bandit_feedbacks,
        evaluation_policies=evaluation_policies,
        ope_estimators=ope_estimators,
        regression_models=regression_models,
    )

    # conduct an evaluation of OPE experiment
    logger.info("experiment started")
    _ = evaluator.estimate_policy_value(sample_size=sample_size,
                                        n_folds_=n_folds)
    # calculate statistics
    mean = evaluator.calculate_mean(root=True)
    mean_scaled = evaluator.calculate_mean(scale=True, root=True)

    # save results of the evaluation of off-policy estimators
    log_path = Path("./outputs/hypara")
    log_path.mkdir(exist_ok=True, parents=True)
    # save root mse
    root_mse_df = DataFrame()
    root_mse_df["estimator"] = list(mean.keys())
    root_mse_df["mean"] = list(mean.values())
    root_mse_df["mean(scaled)"] = list(mean_scaled.values())
    root_mse_df.to_csv(log_path / "root_mse.csv")
    # conduct pairwise t-tests
    se_df = DataFrame(evaluator.calculate_squared_error())
    se_df = DataFrame(se_df.stack()).reset_index(1)
    se_df.rename(columns={"level_1": "estimators", 0: "se"}, inplace=True)
    nonparam_ttests = (pg.pairwise_ttests(
        data=se_df,
        dv="se",
        parametric=False,
        between="estimators",
    ).round(4).drop(["Contrast", "Parametric", "Paired"], axis=1))
    nonparam_ttests.to_csv(log_path / "nonparam_ttests.csv")
    # print result
    print(root_mse_df)
    experiment = f"{campaign}-{behavior_policy}-{sample_size}"
    elapsed_time = np.round((time.time() - start_time) / 60, 2)
    logger.info(f"finish experiment {experiment} in {elapsed_time}min")