Ejemplo n.º 1
0
    def _parse_record_l(self, line, event):
        """
        Parses the '90 percent error ellipse' record L
        """
        origin = event.origins[0]
        semi_major_axis_azimuth = self._float(line[2:8])
        if semi_major_axis_azimuth is None:
            return
        semi_major_axis_plunge = self._float(line[8:13])
        semi_major_axis_length = self._float(line[13:21])
        intermediate_axis_azimuth = self._float(line[21:27])
        intermediate_axis_plunge = self._float(line[27:32])
        # This is called "intermediate_axis_length",
        # but it is definitively a "semi_intermediate_axis_length",
        # since in most cases:
        #   (intermediate_axis_length / 2) < semi_minor_axis_length
        intermediate_axis_length = self._float(line[32:40])
        semi_minor_axis_azimuth = self._float(line[40:46])
        semi_minor_axis_plunge = self._float(line[46:51])
        semi_minor_axis_length = self._float(line[51:59])

        if (semi_minor_axis_azimuth ==
           semi_minor_axis_plunge ==
           semi_minor_axis_length == 0):
            semi_minor_axis_azimuth = intermediate_axis_azimuth
            semi_minor_axis_plunge = intermediate_axis_plunge
            semi_minor_axis_length = intermediate_axis_length
            origin.depth_type = 'operator assigned'

        # FIXME: The following code needs to be double-checked!
        semi_major_axis_unit_vect = \
            self._spherical_to_cartesian((1,
                                          semi_major_axis_azimuth,
                                          semi_major_axis_plunge))
        semi_minor_axis_unit_vect = \
            self._spherical_to_cartesian((1,
                                          semi_minor_axis_azimuth,
                                          semi_minor_axis_plunge))
        major_axis_rotation = \
            self._angle_between(semi_major_axis_unit_vect,
                                semi_minor_axis_unit_vect)

        origin.origin_uncertainty = OriginUncertainty()
        origin.origin_uncertainty.preferred_description = \
            'confidence ellipsoid'
        origin.origin_uncertainty.confidence_level = 90
        confidence_ellipsoid = ConfidenceEllipsoid()
        confidence_ellipsoid.semi_major_axis_length = \
            semi_major_axis_length * 1000
        confidence_ellipsoid.semi_minor_axis_length = \
            semi_minor_axis_length * 1000
        confidence_ellipsoid.semi_intermediate_axis_length = \
            intermediate_axis_length * 1000
        confidence_ellipsoid.major_axis_plunge = semi_major_axis_plunge
        confidence_ellipsoid.major_axis_azimuth = semi_major_axis_azimuth
        # We need to add 90 to match NEIC QuakeML format,
        # but I don't understand why...
        confidence_ellipsoid.major_axis_rotation = \
            major_axis_rotation + 90
        origin.origin_uncertainty.confidence_ellipsoid = confidence_ellipsoid
Ejemplo n.º 2
0
    def _parse_record_l(self, line, event):
        """
        Parses the '90 percent error ellipse' record L
        """
        origin = event.origins[0]
        semi_major_axis_azimuth = self._float(line[2:8])
        if semi_major_axis_azimuth is None:
            return
        semi_major_axis_plunge = self._float(line[8:13])
        semi_major_axis_length = self._float(line[13:21])
        intermediate_axis_azimuth = self._float(line[21:27])
        intermediate_axis_plunge = self._float(line[27:32])
        # This is called "intermediate_axis_length",
        # but it is definitively a "semi_intermediate_axis_length",
        # since in most cases:
        #   (intermediate_axis_length / 2) < semi_minor_axis_length
        intermediate_axis_length = self._float(line[32:40])
        semi_minor_axis_azimuth = self._float(line[40:46])
        semi_minor_axis_plunge = self._float(line[46:51])
        semi_minor_axis_length = self._float(line[51:59])

        if (semi_minor_axis_azimuth ==
           semi_minor_axis_plunge ==
           semi_minor_axis_length == 0):
            semi_minor_axis_azimuth = intermediate_axis_azimuth
            semi_minor_axis_plunge = intermediate_axis_plunge
            semi_minor_axis_length = intermediate_axis_length
            origin.depth_type = 'operator assigned'

        # FIXME: The following code needs to be double-checked!
        semi_major_axis_unit_vect = \
            self._spherical_to_cartesian((1,
                                          semi_major_axis_azimuth,
                                          semi_major_axis_plunge))
        semi_minor_axis_unit_vect = \
            self._spherical_to_cartesian((1,
                                          semi_minor_axis_azimuth,
                                          semi_minor_axis_plunge))
        major_axis_rotation = \
            self._angle_between(semi_major_axis_unit_vect,
                                semi_minor_axis_unit_vect)

        origin.origin_uncertainty = OriginUncertainty()
        origin.origin_uncertainty.preferred_description = \
            'confidence ellipsoid'
        origin.origin_uncertainty.confidence_level = 90
        confidence_ellipsoid = ConfidenceEllipsoid()
        confidence_ellipsoid.semi_major_axis_length = \
            semi_major_axis_length * 1000
        confidence_ellipsoid.semi_minor_axis_length = \
            semi_minor_axis_length * 1000
        confidence_ellipsoid.semi_intermediate_axis_length = \
            intermediate_axis_length * 1000
        confidence_ellipsoid.major_axis_plunge = semi_major_axis_plunge
        confidence_ellipsoid.major_axis_azimuth = semi_major_axis_azimuth
        # We need to add 90 to match NEIC QuakeML format,
        # but I don't understand why...
        confidence_ellipsoid.major_axis_rotation = \
            major_axis_rotation + 90
        origin.origin_uncertainty.confidence_ellipsoid = confidence_ellipsoid
Ejemplo n.º 3
0
def full_test_event():
    """
    Function to generate a basic, full test event
    """
    test_event = Event()
    test_event.origins.append(
        Origin(time=UTCDateTime("2012-03-26") + 1.2,
               latitude=45.0,
               longitude=25.0,
               depth=15000))
    test_event.event_descriptions.append(EventDescription())
    test_event.event_descriptions[0].text = 'LE'
    test_event.creation_info = CreationInfo(agency_id='TES')
    test_event.magnitudes.append(
        Magnitude(mag=0.1,
                  magnitude_type='ML',
                  creation_info=CreationInfo('TES'),
                  origin_id=test_event.origins[0].resource_id))
    test_event.magnitudes.append(
        Magnitude(mag=0.5,
                  magnitude_type='Mc',
                  creation_info=CreationInfo('TES'),
                  origin_id=test_event.origins[0].resource_id))
    test_event.magnitudes.append(
        Magnitude(mag=1.3,
                  magnitude_type='Ms',
                  creation_info=CreationInfo('TES'),
                  origin_id=test_event.origins[0].resource_id))

    # Define the test pick
    _waveform_id_1 = WaveformStreamID(station_code='FOZ',
                                      channel_code='SHZ',
                                      network_code='NZ')
    _waveform_id_2 = WaveformStreamID(station_code='WTSZ',
                                      channel_code='BH1',
                                      network_code=' ')
    # Pick to associate with amplitude
    test_event.picks.append(
        Pick(waveform_id=_waveform_id_1,
             phase_hint='IAML',
             polarity='undecidable',
             time=UTCDateTime("2012-03-26") + 1.68,
             evaluation_mode="manual"))
    # Need a second pick for coda
    test_event.picks.append(
        Pick(waveform_id=_waveform_id_1,
             onset='impulsive',
             phase_hint='PN',
             polarity='positive',
             time=UTCDateTime("2012-03-26") + 1.68,
             evaluation_mode="manual"))
    # Unassociated pick
    test_event.picks.append(
        Pick(waveform_id=_waveform_id_2,
             onset='impulsive',
             phase_hint='SG',
             polarity='undecidable',
             time=UTCDateTime("2012-03-26") + 1.72,
             evaluation_mode="manual"))
    # Unassociated pick
    test_event.picks.append(
        Pick(waveform_id=_waveform_id_2,
             onset='impulsive',
             phase_hint='PN',
             polarity='undecidable',
             time=UTCDateTime("2012-03-26") + 1.62,
             evaluation_mode="automatic"))
    # Test a generic local magnitude amplitude pick
    test_event.amplitudes.append(
        Amplitude(generic_amplitude=2.0,
                  period=0.4,
                  pick_id=test_event.picks[0].resource_id,
                  waveform_id=test_event.picks[0].waveform_id,
                  unit='m',
                  magnitude_hint='ML',
                  category='point',
                  type='AML'))
    # Test a coda magnitude pick
    test_event.amplitudes.append(
        Amplitude(generic_amplitude=10,
                  pick_id=test_event.picks[1].resource_id,
                  waveform_id=test_event.picks[1].waveform_id,
                  type='END',
                  category='duration',
                  unit='s',
                  magnitude_hint='Mc',
                  snr=2.3))
    test_event.origins[0].arrivals.append(
        Arrival(time_weight=0,
                phase=test_event.picks[1].phase_hint,
                pick_id=test_event.picks[1].resource_id))
    test_event.origins[0].arrivals.append(
        Arrival(time_weight=2,
                phase=test_event.picks[2].phase_hint,
                pick_id=test_event.picks[2].resource_id,
                backazimuth_residual=5,
                time_residual=0.2,
                distance=15,
                azimuth=25))
    test_event.origins[0].arrivals.append(
        Arrival(time_weight=2,
                phase=test_event.picks[3].phase_hint,
                pick_id=test_event.picks[3].resource_id,
                backazimuth_residual=5,
                time_residual=0.2,
                distance=15,
                azimuth=25))
    # Add in error info (line E)
    test_event.origins[0].quality = OriginQuality(standard_error=0.01,
                                                  azimuthal_gap=36)
    # Origin uncertainty in Seisan is output as long-lat-depth, quakeML has
    # semi-major and semi-minor
    test_event.origins[0].origin_uncertainty = OriginUncertainty(
        confidence_ellipsoid=ConfidenceEllipsoid(
            semi_major_axis_length=3000,
            semi_minor_axis_length=1000,
            semi_intermediate_axis_length=2000,
            major_axis_plunge=20,
            major_axis_azimuth=100,
            major_axis_rotation=4))
    test_event.origins[0].time_errors = QuantityError(uncertainty=0.5)
    # Add in fault-plane solution info (line F) - Note have to check program
    # used to determine which fields are filled....
    test_event.focal_mechanisms.append(
        FocalMechanism(nodal_planes=NodalPlanes(
            nodal_plane_1=NodalPlane(strike=180,
                                     dip=20,
                                     rake=30,
                                     strike_errors=QuantityError(10),
                                     dip_errors=QuantityError(10),
                                     rake_errors=QuantityError(20))),
                       method_id=ResourceIdentifier(
                           "smi:nc.anss.org/focalMechanism/FPFIT"),
                       creation_info=CreationInfo(agency_id="NC"),
                       misfit=0.5,
                       station_distribution_ratio=0.8))
    # Need to test high-precision origin and that it is preferred origin.
    # Moment tensor includes another origin
    test_event.origins.append(
        Origin(time=UTCDateTime("2012-03-26") + 1.2,
               latitude=45.1,
               longitude=25.2,
               depth=14500))
    test_event.magnitudes.append(
        Magnitude(mag=0.1,
                  magnitude_type='MW',
                  creation_info=CreationInfo('TES'),
                  origin_id=test_event.origins[-1].resource_id))
    # Moment tensors go with focal-mechanisms
    test_event.focal_mechanisms.append(
        FocalMechanism(moment_tensor=MomentTensor(
            derived_origin_id=test_event.origins[-1].resource_id,
            moment_magnitude_id=test_event.magnitudes[-1].resource_id,
            scalar_moment=100,
            tensor=Tensor(
                m_rr=100, m_tt=100, m_pp=10, m_rt=1, m_rp=20, m_tp=15),
            method_id=ResourceIdentifier(
                'smi:nc.anss.org/momentTensor/BLAH'))))
    return test_event
Ejemplo n.º 4
0
def computeOriginErrors(org):
    """
    Given a NLL's event build the Confidence Ellipsoid from Covariance Matrix
    :param evt: NLL's QML Event
    :return: Dictionary containing computed errors
    """

    # WARNING: QuakeML uses meter for origin depth, origin uncertainty and confidence ellipsoid, SC3ML uses kilometers.

    d = {}

    confidenceLevel = 0.90  # Conficence level

    kp1 = np.sqrt(chi2.ppf(confidenceLevel, 1))  # 1D confidence coefficient
    kp2 = np.sqrt(chi2.ppf(confidenceLevel, 2))  # 2D confidence coefficient
    kp3 = np.sqrt(chi2.ppf(confidenceLevel, 3))  # 3D confidence coefficient

    # Covariance matrix is given in the NLL's "STATISTICS" line of *.grid0.loc.hyp file and in the Origin's comments parsed by ObsPy
    comments = org['comments'][0].text
    stats = comments.split('STATISTICS')[-1].split()
    cvm = [float(i) for i in stats[1::2]][3:9]  # Covariance matrix

    # Code adapted from IGN's computation of ConfidenceEllipsoid in "locsat.cpp" program
    cvxx = cvm[0]
    cvxy = cvm[1]
    cvxz = cvm[2]
    cvyy = cvm[3]
    cvyz = cvm[4]
    cvzz = cvm[5]

    nll3d = np.array([[cvxx, cvxy, cvxz],
                      [cvxy, cvyy, cvyz],
                      [cvxz, cvyz, cvzz]
                      ])

    # 1D confidence intervals at confidenceLevel
    errx = kp1 * np.sqrt(cvxx)
    qe = QuantityError(uncertainty=errx, confidence_level=confidenceLevel * 100.0)
    d['longitude_errors'] = qe

    erry = kp1 * np.sqrt(cvyy)
    qe = QuantityError(uncertainty=erry, confidence_level=confidenceLevel * 100.0)
    d['latitude_errors'] = qe

    errz = kp1 * np.sqrt(cvzz)
    qe = QuantityError(uncertainty=errz, confidence_level=confidenceLevel * 100.0)
    d['depth_errors'] = qe
    
    #NLL kp1=1 because is up to 1 sigma 68.3%, LocSAT kp1=2.71 because is up to 90% (one dim) 
    #LocSAT np.sqrt(cvzz)/2.71 = NLL np.sqrt(cvzz)



    # 2D confidence intervals at confidenceLevel
    nll2d = np.array(nll3d[:2, :2])
    eigval2d, eigvec2d = np.linalg.eig(nll2d)  # XY (horizontal) plane

    # indexes are not necessarily ordered. Sort them by eigenvalues
    idx = eigval2d.argsort()
    eigval2d = eigval2d[idx]
    eigvec2d = eigvec2d[:, idx]

    # sminax = kp2 * np.sqrt(eigval2d[0]) * 1.0e3  # QML in meters
    # smajax = kp2 * np.sqrt(eigval2d[1]) * 1.0e3  # QML in meters
    sminax = kp2 * np.sqrt(eigval2d[0])  # SC3ML in kilometers
    smajax = kp2 * np.sqrt(eigval2d[1])  # SC3ML in kilometers
    strike = 90.0 - np.rad2deg(np.arctan(eigvec2d[1, 1] / eigvec2d[0, 1]))  # calculate and refer it to North
    # horizontalUncertainty = np.sqrt((errx ** 2) + (erry ** 2)) * 1.0e3   # QML in meters
    horizontalUncertainty = np.sqrt((errx ** 2) + (erry ** 2))   # SC3ML in kilometers

    # 3D confidence intervals at confidenceLevel
    eigval3d, eigvec3d = np.linalg.eig(nll3d)
    idx = eigval3d.argsort()
    eigval3d = eigval3d[idx]
    eigvec3d = eigvec3d[:, idx]

    # s3dminax = kp3 * np.sqrt(eigval3d[0]) * 1.0e3   # QML in meters
    # s3dintax = kp3 * np.sqrt(eigval3d[1]) * 1.0e3   # QML in meters
    # s3dmaxax = kp3 * np.sqrt(eigval3d[2]) * 1.0e3   # QML in meters
    s3dminax = kp3 * np.sqrt(eigval3d[0])   # SC3ML in kilometers
    s3dintax = kp3 * np.sqrt(eigval3d[1])   # SC3ML in kilometers
    s3dmaxax = kp3 * np.sqrt(eigval3d[2])   # SCEML in kilometers

    majaxplunge = normalizeAngle(
        np.rad2deg(np.arctan(eigvec3d[2, 2] / np.sqrt((eigvec3d[2, 0] ** 2) + (eigvec3d[2, 1] ** 2)))))
    majaxazimuth = normalizeAngle(np.rad2deg(np.arctan(eigvec3d[2, 1] / eigvec3d[2, 0])))
    majaxrotation = normalizeAngle(
        np.rad2deg(np.arctan(eigvec3d[0, 2] / np.sqrt((eigvec3d[0, 0] ** 2) + (eigvec3d[0, 1] ** 2)))))

    # print('2D sminax:\t{}\tsmajax:\t{}\tstrike:\t{}'.format(sminax, smajax, strike))
    # print('3D sminax:\t{}\tsmajax:\t{}\tsintax:\t{}'.format(s3dminax, s3dmaxax, s3dintax))
    # print('   plunge:\t{}\tazim:\t{}\trotat:\t{}'.format(majaxplunge, majaxazimuth, majaxrotation))
    # print('-' * 144)

    ce = ConfidenceEllipsoid(semi_major_axis_length=s3dmaxax,
                             semi_minor_axis_length=s3dminax,
                             semi_intermediate_axis_length=s3dintax,
                             major_axis_plunge=majaxplunge,
                             major_axis_azimuth=majaxazimuth,
                             major_axis_rotation=majaxrotation)

    ou = OriginUncertainty(horizontal_uncertainty=horizontalUncertainty,
                           min_horizontal_uncertainty=sminax,
                           max_horizontal_uncertainty=smajax,
                           azimuth_max_horizontal_uncertainty=strike,
                           confidence_ellipsoid=ce,
                           preferred_description='confidence ellipsoid',
                           confidence_level=confidenceLevel * 100.0)

    d['origin_uncertainty'] = ou

    return d
Ejemplo n.º 5
0
def _read_single_event(event_file, locate_dir, units, local_mag_ph):
    """
    Parse an event file from QuakeMigrate into an obspy Event object.

    Parameters
    ----------
    event_file : `pathlib.Path` object
        Path to .event file to read.
    locate_dir : `pathlib.Path` object
        Path to locate directory (contains "events", "picks" etc. directories).
    units : {"km", "m"}
        Grid projection coordinates for QM LUT (determines units of depths and
        uncertainties in the .event files).
    local_mag_ph : {"S", "P"}
        Amplitude measurement used to calculate local magnitudes.

    Returns
    -------
    event : `obspy.Event` object
        Event object populated with all available information output by
        :class:`~quakemigrate.signal.scan.locate()`, including event locations
        and uncertainties, picks, and amplitudes and magnitudes if available.

    """

    # Parse information from event file
    event_info = pd.read_csv(event_file).iloc[0]
    event_uid = str(event_info["EventID"])

    # Set distance conversion factor (from units of QM LUT projection units).
    if units == "km":
        factor = 1e3
    elif units == "m":
        factor = 1
    else:
        raise AttributeError(f"units must be 'km' or 'm'; not {units}")

    # Create event object to store origin and pick information
    event = Event()
    event.extra = AttribDict()
    event.resource_id = str(event_info["EventID"])
    event.creation_info = CreationInfo(author="QuakeMigrate",
                                       version=quakemigrate.__version__)

    # Add COA info to extra
    event.extra.coa = {"value": event_info["COA"], "namespace": ns}
    event.extra.coa_norm = {"value": event_info["COA_NORM"], "namespace": ns}
    event.extra.trig_coa = {"value": event_info["TRIG_COA"], "namespace": ns}
    event.extra.dec_coa = {"value": event_info["DEC_COA"], "namespace": ns}
    event.extra.dec_coa_norm = {
        "value": event_info["DEC_COA_NORM"],
        "namespace": ns
    }

    # Determine location of cut waveform data - add to event object as a
    # custom extra attribute.
    mseed = locate_dir / "raw_cut_waveforms" / event_uid
    event.extra.cut_waveforms_file = {
        "value": str(mseed.with_suffix(".m").resolve()),
        "namespace": ns
    }
    if (locate_dir / "real_cut_waveforms").exists():
        mseed = locate_dir / "real_cut_waveforms" / event_uid
        event.extra.real_cut_waveforms_file = {
            "value": str(mseed.with_suffix(".m").resolve()),
            "namespace": ns
        }
    if (locate_dir / "wa_cut_waveforms").exists():
        mseed = locate_dir / "wa_cut_waveforms" / event_uid
        event.extra.wa_cut_waveforms_file = {
            "value": str(mseed.with_suffix(".m").resolve()),
            "namespace": ns
        }

    # Create origin with spline location and set to preferred event origin.
    origin = Origin()
    origin.method_id = "spline"
    origin.longitude = event_info["X"]
    origin.latitude = event_info["Y"]
    origin.depth = event_info["Z"] * factor
    origin.time = UTCDateTime(event_info["DT"])
    event.origins = [origin]
    event.preferred_origin_id = origin.resource_id

    # Create origin with gaussian location and associate with event
    origin = Origin()
    origin.method_id = "gaussian"
    origin.longitude = event_info["GAU_X"]
    origin.latitude = event_info["GAU_Y"]
    origin.depth = event_info["GAU_Z"] * factor
    origin.time = UTCDateTime(event_info["DT"])
    event.origins.append(origin)

    ouc = OriginUncertainty()
    ce = ConfidenceEllipsoid()
    ce.semi_major_axis_length = event_info["COV_ErrY"] * factor
    ce.semi_intermediate_axis_length = event_info["COV_ErrX"] * factor
    ce.semi_minor_axis_length = event_info["COV_ErrZ"] * factor
    ce.major_axis_plunge = 0
    ce.major_axis_azimuth = 0
    ce.major_axis_rotation = 0
    ouc.confidence_ellipsoid = ce
    ouc.preferred_description = "confidence ellipsoid"

    # Set uncertainties for both as the gaussian uncertainties
    for origin in event.origins:
        origin.longitude_errors.uncertainty = kilometer2degrees(
            event_info["GAU_ErrX"] * factor / 1e3)
        origin.latitude_errors.uncertainty = kilometer2degrees(
            event_info["GAU_ErrY"] * factor / 1e3)
        origin.depth_errors.uncertainty = event_info["GAU_ErrZ"] * factor
        origin.origin_uncertainty = ouc

    # Add OriginQuality info to each origin?
    for origin in event.origins:
        origin.origin_type = "hypocenter"
        origin.evaluation_mode = "automatic"

    # --- Handle picks file ---
    pick_file = locate_dir / "picks" / event_uid
    if pick_file.with_suffix(".picks").is_file():
        picks = pd.read_csv(pick_file.with_suffix(".picks"))
    else:
        return None

    for _, pickline in picks.iterrows():
        station = str(pickline["Station"])
        phase = str(pickline["Phase"])
        wid = WaveformStreamID(network_code="", station_code=station)

        for method in ["modelled", "autopick"]:
            pick = Pick()
            pick.extra = AttribDict()
            pick.waveform_id = wid
            pick.method_id = method
            pick.phase_hint = phase
            if method == "autopick" and str(pickline["PickTime"]) != "-1":
                pick.time = UTCDateTime(pickline["PickTime"])
                pick.time_errors.uncertainty = float(pickline["PickError"])
                pick.extra.snr = {
                    "value": float(pickline["SNR"]),
                    "namespace": ns
                }
            elif method == "modelled":
                pick.time = UTCDateTime(pickline["ModelledTime"])
            else:
                continue
            event.picks.append(pick)

    # --- Handle amplitudes file ---
    amps_file = locate_dir / "amplitudes" / event_uid
    if amps_file.with_suffix(".amps").is_file():
        amps = pd.read_csv(amps_file.with_suffix(".amps"))

        i = 0
        for _, ampsline in amps.iterrows():
            wid = WaveformStreamID(seed_string=ampsline["id"])
            noise_amp = ampsline["Noise_amp"] / 1000  # mm to m
            for phase in ["P_amp", "S_amp"]:
                amp = Amplitude()
                if pd.isna(ampsline[phase]):
                    continue
                amp.generic_amplitude = ampsline[phase] / 1000  # mm to m
                amp.generic_amplitude_errors.uncertainty = noise_amp
                amp.unit = "m"
                amp.type = "AML"
                amp.method_id = phase
                amp.period = 1 / ampsline[f"{phase[0]}_freq"]
                amp.time_window = TimeWindow(
                    reference=UTCDateTime(ampsline[f"{phase[0]}_time"]))
                # amp.pick_id = ?
                amp.waveform_id = wid
                # amp.filter_id = ?
                amp.magnitude_hint = "ML"
                amp.evaluation_mode = "automatic"
                amp.extra = AttribDict()
                try:
                    amp.extra.filter_gain = {
                        "value": ampsline[f"{phase[0]}_filter_gain"],
                        "namespace": ns
                    }
                    amp.extra.avg_amp = {
                        "value": ampsline[f"{phase[0]}_avg_amp"] / 1000,  # m
                        "namespace": ns
                    }
                except KeyError:
                    pass

                if phase[0] == local_mag_ph and not pd.isna(ampsline["ML"]):
                    i += 1
                    stat_mag = StationMagnitude()
                    stat_mag.extra = AttribDict()
                    # stat_mag.origin_id = ? local_mag_loc
                    stat_mag.mag = ampsline["ML"]
                    stat_mag.mag_errors.uncertainty = ampsline["ML_Err"]
                    stat_mag.station_magnitude_type = "ML"
                    stat_mag.amplitude_id = amp.resource_id
                    stat_mag.extra.picked = {
                        "value": ampsline["is_picked"],
                        "namespace": ns
                    }
                    stat_mag.extra.epi_dist = {
                        "value": ampsline["epi_dist"],
                        "namespace": ns
                    }
                    stat_mag.extra.z_dist = {
                        "value": ampsline["z_dist"],
                        "namespace": ns
                    }

                    event.station_magnitudes.append(stat_mag)

                event.amplitudes.append(amp)

        mag = Magnitude()
        mag.extra = AttribDict()
        mag.mag = event_info["ML"]
        mag.mag_errors.uncertainty = event_info["ML_Err"]
        mag.magnitude_type = "ML"
        # mag.origin_id = ?
        mag.station_count = i
        mag.evaluation_mode = "automatic"
        mag.extra.r2 = {"value": event_info["ML_r2"], "namespace": ns}

        event.magnitudes = [mag]
        event.preferred_magnitude_id = mag.resource_id

    return event