Ejemplo n.º 1
0
        traceE = Trace(az)
        if PlotUnit == 'VEL':
            #integrate accerelation if plotting velocity
            traceN.integrate(method='cumtrapz')
            traceE.integrate(method='cumtrapz')
        plottheta = theta[thetacount] * 180 / np.pi
        thetacount = thetacount + 1
        # store stats
        stationname = sta + '%04d' % i
        channelnameN = cha + '%s' % 'N'
        channelnameE = cha + '%s' % 'E'

        # for NS components
        statsN = Stats()
        statsN.sampling_rate = 1.0 / sampling_rate_x
        statsN.delta = sampling_rate_x
        statsN.starttime = starttime
        statsN.npts = len(traceN.data)
        statsN.network = net
        statsN.station = stationname
        statsN.location = ''
        statsN.channel = channelnameN
        traceN.stats = statsN
        traceN.stats.sac = obspy.core.AttribDict()
        traceN.stats.sac.back_azimuth = plottheta  # use this as azimuth of station

        #---applying filters---#
        traceN.filter('bandpass', freqmin=freqmin, freqmax=freqmax)
        tN = traceN.stats.starttime
        traceN.trim(starttime=tN, endtime=tN + trim_end_time)
        traceN.taper(0.05, side='right')
Ejemplo n.º 2
0
def read_TEXCEL_CSV(filename, **kwargs):
    """
    Reads a texcel csv file and returns a uquake Stream object.

    .. warning::
        This function should NOT be called directly, it registers via the
        uquake :func:`~uquake.core.stream.read` function, call this
        instead.
    :param filename: the path to the file
    :param kwargs:
    :return: ~uquake.core.stream.Stream
    """

    with open(filename) as fle:
        x = []
        y = []
        z = []

        for k, line in enumerate(fle):
            if k == 0:
                if 'MICROPHONE' in line:
                    offset = 9
                else:
                    offset = 8
            # header

            if k < 2:
                continue

            val = line.strip().split(',')

            # relative time

            if k == 3:
                rt0 = timedelta(seconds=float(val[0]))

            elif k == 6:
                station = str(eval(val[offset]))

            elif k == 7:
                date = val[offset]

            elif k == 8:
                date_time = date + " " + val[offset]
                datetime = parse(date_time)
                starttime = datetime + rt0

            elif k == 9:
                site = val[offset]

            elif k == 10:
                location = val[offset]

            elif k == 17:

                sensitivity_x = float(val[offset])
                sensitivity_y = float(val[offset + 1])
                sensitivity_z = float(val[offset + 2])

            elif k == 18:
                range_x = float(val[offset])
                range_y = float(val[offset + 1])
                range_z = float(val[offset + 2])

            elif k == 19:
                trigger_x = float(val[offset])
                trigger_y = float(val[offset + 1])
                trigger_z = float(val[offset + 2])

            elif k == 20:
                si_x = float(val[offset])
                si_y = float(val[offset + 1])
                si_z = float(val[offset + 2])

            elif k == 21:
                sr_x = float(val[offset])
                sr_y = float(val[offset + 1])
                sr_z = float(val[offset + 2])

            x.append(float(val[1]))
            y.append(float(val[2]))
            z.append(float(val[3]))

        x = np.array(x)
        y = np.array(y)
        z = np.array(z)

        stats = Stats()
        stats.network = site
        stats.delta = si_x / 1000.0
        stats.npts = len(x)
        stats.location = location
        stats.station = station
        stats.starttime = UTCDateTime(starttime)

        stats.channel = 'radial'
        tr_x = Trace(data=x / 1000.0, header=stats)

        stats.delta = si_y / 1000.0
        stats.channel = 'transverse'
        tr_y = Trace(data=y / 1000.0, header=stats)

        stats.delta = si_z / 1000.0
        stats.channel = 'vertical'
        tr_z = Trace(data=z / 1000.0, header=stats)

    return Stream(traces=[tr_x, tr_y, tr_z])
Ejemplo n.º 3
0
    def parseISF(self, isf_data, header_only=None, convert=None):
        """
        Determine starting point of data.
        Header has something like 'CURVE #520000', where ascii '5' is the
        length of the length field '20000'.

        ::

            'CURVE #520000xxxx...'
              ^      ^^    ^
              |      ||    +---- data_loc:    location of first valid byte of data
              |      |+--------- len_loc:     location of first byte of data length field
              |      +---------- len_len_loc: location of length of length
              +----------------- tag_loc:     location of start tag
        """
        start_tag = 'CURVE #'
        tag_loc = int(isf_data.find(start_tag))
        len_len_loc = tag_loc + len(start_tag)
        len_loc = len_len_loc + 1
        len_len = int(isf_data[len_len_loc]) # e.g. 5
        data_loc = len_loc + len_len
        data_len = int(isf_data[len_loc:len_loc+len_len]) # e.g. 20000

        # Extract and parse header
        header = isf_data[:tag_loc]
        # Reformat the header into a dictionary
        header_dict = {}
        items = header.replace(':WFMPRE:','').replace(':','').split(';') # list of "key value" pairs
        for item in items:
            if(item):
                key, value = item.split(' ', 1) # maxsplit 1 to ignore subsequent spaces in value
                value = value.replace('"', '')
                header_dict[key] = value

        if(header_only):
            return header_dict

        # Extract data and convert from string to integer value
        data = isf_data[data_loc:]

        stats = Stats()
        stats.npts = int(header_dict['NR_PT'])
        stats.calib = float(header_dict['YMULT'])
        byte_order = header_dict['BYT_OR'] # 'MSB' or 'LSB'

        if(byte_order == 'MSB'):
            byte_order = '>'
        else:
            byte_order = '<'
        points = []
        for i in range(0, stats.npts*2, 2):
            value = data[i:i+2] # as string
            converted = struct.unpack('%sh' % byte_order, value)[0]
            points.append(converted)

        # Optionally convert points to engineering units
        if(convert):
            try:
                points = np.array(points) * stats.calib  # requires numpy
            except NameError:
                # If numpy not available, use list instead.
                p = []
                for point in points:
                    p.append(point * stats.calib)
                points = p
        stats.time_offset = float(header_dict['XZERO'])
        stats.calib_unit = header_dict['YUNIT']
        stats.delta = float(header_dict['XINCR'])
        stats.amp_offset = float(header_dict['YOFF'])
        stats.comments = header_dict['WFID']
        stats.channel = header_dict['WFID'][0:3]

        return stats, points