Ejemplo n.º 1
0
def _cal_event_snr(tr, signal=[-10, 10], noise=[-100, -50], waterlevel=1.0e-8):
    """
    Calculation of SNR for event data.

    :param tr:
    :param signal:
    :param noise:
    :param waterlevel:
    :return:
    """

    tr_sig = tr.copy()
    tr_noi = tr.copy()

    t1 = tr.stats.onset + signal[0]
    t2 = tr.stats.onset + signal[1]
    if t1 < tr.stats.starttime or t2 > tr.stats.endtime:
        logging.warning("t1 < tr.stats.starttime")
        return 0
    tr_sig.trim(starttime=t1, endtime=t2)

    t1 = tr.stats.onset + noise[0]
    t2 = tr.stats.onset + noise[1]
    if t1 < tr.stats.starttime or t2 > tr.stats.endtime:
        logging.warning("t1 < tr.stats.starttime")
        return 0
    tr_noi.trim(starttime=t1, endtime=t2)

    sig = envelope(tr_sig.data)
    noi = envelope(tr_noi.data)
    snr = np.max(sig) / max(np.max(noi), waterlevel)

    return snr
Ejemplo n.º 2
0
    def test_trace(self):

        t = np.arange(0, 0.5, self.dt)
        impuls = np.zeros(len(t))
        impuls[0.08 / self.dt] = 1
        impuls[0.12 / self.dt] = -1
        impuls[0.235 / self.dt] = 1
        impuls[0.265 / self.dt] = -1
        impuls[0.39 / self.dt] = 1
        impuls[0.41 / self.dt] = -1
        trace = np.convolve(impuls, self.ricker, mode='same')

        import matplotlib.pyplot as plt
        fig = plt.figure()
        fig.set_facecolor('white')
        ax1 = fig.add_subplot(211)
        ax1.plot(t, impuls, 'k')
        ax2 = fig.add_subplot(212)
        ax2.plot(trace, 'k')

        from obspy.signal import filter
        env = filter.envelope(trace)
        ifreq = instant_freq(trace,
                             self.dt,
                             np.fft.fft(trace),
                             0,
                             len(trace) - 1,
                             plot=False)
        ibw = instant_bw(trace,
                         env,
                         self.dt,
                         np.fft.fft(trace),
                         ponset=0,
                         tend=len(trace),
                         plot=False)
Ejemplo n.º 3
0
def Collect_All_Envelopes():

    min_freq = 12
    max_freq = 22
    all_trainings =LoadPickle('all_trainings')
    i = 1
    all_envelopes ={name : [] for name in all_trainings.keys()}
    for name, trainings in all_trainings.items():
        print(name)
        print(i)
        i = i+1
    #Session, signalIdx, block
        for session in range(0, trainings.shape[0]):
            for block in range(0,trainings.shape[2]):
                single_block = trainings[session,:,block][~np.isnan(trainings[session,:,block])]

                #check if there isnt to many nans
                if(np.count_nonzero(~np.isnan(single_block)) > 1000):
                    #Filter for bands
                    filt = FilterData(single_block, min_freq, max_freq)
                    #Get envelope
                    envelope = filters.envelope(filt)
                    all_envelopes[name].append(envelope)

    SavePickle(all_envelopes, 'all_envelopes')
    return all_envelopes
Ejemplo n.º 4
0
def calculations(traces1, traces1_norm, traces2, traces2_norm, time_events):
    global corr_deconv_array, corr_deconv_array_env, half_x_axis, env_max, env_max_sec
    corr_deconv_array = np.empty([len(traces1_norm), 2 * len(traces1_norm[0])])  # Init empty numpy array
    # for calculating deconvolution
    print(corr_deconv_array.shape)
    a = noise_cross_deconv(traces1_norm[0], traces2_norm[0], fs=500)
    print(a.shape)

    for i in range(len(traces1_norm)):
        corr_deconv_array[i,:] = noise_cross_deconv(traces1_norm[i], traces2_norm[i], fs=500)  # Calculating
            # deconvolution

    corr_deconv_array_env = np.empty_like(corr_deconv_array)  # Init empty array with the same shape as another array
    for i in range(len(corr_deconv_array)):
        corr_deconv_array_env[i, :] = envelope(corr_deconv_array[i, :])

    half_x_axis = int(np.ceil(len(corr_deconv_array_env[0])/2))
    env_max = np.argmax(corr_deconv_array_env[:,half_x_axis:half_x_axis+2000], axis=1)  # Index of maximum value
        # of envelope
    env_max_sec = env_max / 1000
    env_max_deconv_data = np.array([time_events, env_max_sec])
    env_max_deconv_data = env_max_deconv_data.T
    output_filename = 'env_max_deconv_out.dat'
    np.savetxt(output_filename, env_max_deconv_data, delimiter='\t', header='Day\tTime_when_envelope_has_maximum_value')
    print(output_filename, ' was saved')

    data2 = (corr_deconv_array, corr_deconv_array_env, half_x_axis, env_max, env_max_sec)
    return data2
Ejemplo n.º 5
0
def ram_norm(tr,winlen,prefilt=None):
    
    trace_orig = tr.copy()
    hlen = int(winlen*tr.stats.sampling_rate/2.)

    if 2*hlen >= tr.stats.npts:
        tr.data = np.zeros(tr.stats.npts)
        return()


    weighttrace = np.zeros(tr.stats.npts)
    
    if prefilt is not None:
        tr.filter('bandpass',freqmin=prefilt[0],freqmax=prefilt[1],\
        corners=prefilt[2],zerophase=True)
        
    envlp = envelope(tr.data)

    for n in xrange(hlen,tr.stats.npts-hlen):
        weighttrace[n] = np.sum(envlp[n-hlen:n+hlen+1]/(2.*hlen+1))
        
    weighttrace[0:hlen] = weighttrace[hlen]
    weighttrace[-hlen:] = weighttrace[-hlen-1]
    
    tr.data = trace_orig.data / weighttrace
Ejemplo n.º 6
0
    def calculate_preliminiaries(self):
        """
        Calculates the envelope, STA/LTA and the finds the local extrema.
        """
        logger.info("Calculating envelope of synthetics.")
        self.synthetic_envelope = envelope(self.synthetic.data)
        logger.info("Calculating STA/LTA.")
        self.stalta = sta_lta(self.synthetic_envelope,
                              self.observed.stats.delta,
                              self.config.min_period)
        self.peaks, self.troughs = utils.find_local_extrema(self.stalta)
        print(self.peaks, self.troughs)  #pa

        if not len(self.peaks) and len(self.troughs):
            return

        if self.ttimes:
            offset = self.event.origin_time - self.observed.stats.starttime
            min_time = self.ttimes[0]["time"] - \
                self.config.max_time_before_first_arrival + offset
            min_idx = int(min_time / self.observed.stats.delta)

            dist_in_km = obspy.geodetics.calc_vincenty_inverse(
                self.station.latitude, self.station.longitude,
                self.event.latitude, self.event.longitude)[0] / 1000.0
            max_time = dist_in_km / self.config.min_surface_wave_velocity + \
                offset + self.config.max_period
            max_idx = int(max_time / self.observed.stats.delta)

            # Reject all peaks and troughs before the minimal allowed start
            # time and after the maximum allowed end time.
            first_trough, last_trough = self.troughs[0], self.troughs[-1]
            self.troughs = self.troughs[(self.troughs >= min_idx)
                                        & (self.troughs <= max_idx)]
            print(self.troughs)  #pa

            # If troughs have been removed, readd them add the boundaries.
            if len(self.troughs):
                if first_trough != self.troughs[0]:
                    self.troughs = np.concatenate([
                        np.array([min_idx], dtype=self.troughs.dtype),
                        self.troughs
                    ])
                if last_trough != self.troughs[-1]:
                    self.troughs = np.concatenate([
                        self.troughs,
                        np.array([max_idx], dtype=self.troughs.dtype)
                    ])
            #pa
            else:
                self.troughs = np.concatenate([
                    np.array([min_idx], dtype=self.troughs.dtype),
                    np.array([max_idx], dtype=self.troughs.dtype)
                ])
            ##
            # Make sure peaks are inside the troughs!
            print(self.troughs)  #pa
            min_trough, max_trough = self.troughs[0], self.troughs[-1]
            self.peaks = self.peaks[(self.peaks > min_trough)
                                    & (self.peaks < max_trough)]
Ejemplo n.º 7
0
def envsac(tr, low, high, delta, debug=False):
    """
    Function to generate an envelope from given seismic data - requires obspy

    :type tr: obspy.Trace
    :type low: float
    :param low: Lowcut in Hz
    :type high: float
    :param high: Highcut in Hz
    :type delta: float
    :param delta: Sampling interval desired

    :return env: Envelope as an obspy.Trace object
    """
    from obspy.signal.filter import bandpass, envelope
    if debug:
        print 'Detrend'
    env=tr.detrend('simple')                    # Demean the data
    del tr
    if debug:
        print 'Resample'
    env.resample(40)                            # Downsample to 40Hz
    if debug:
        print 'Bandpass'
    env.data=bandpass(env.data, low, high, env.stats.sampling_rate,\
                      3, True)                  # Filter
    if debug:
        print 'Envelope'
    env.data=envelope(env.data)                 # Generate envelope
    if debug:
        print 'Resample'
    env.resample(1)                             # Deimate to 1 Hz
    return env
Ejemplo n.º 8
0
def proc_syn_data():

    X_orig, y, names = read_syncat()

    nev = len(y)
    names = ['Kurtosis', 'MaxMean', 'DomT', 'Dur']

    X = np.empty((nev, len(names)), dtype=float)
    # for each event
    for i in xrange(nev):
        otime = X_orig[i]
        fname = "%s_*MSEED" % (otime)
        st = read(join(syn_dir, fname))
        tr = st[0]
        starttime = tr.stats.starttime
        dt = tr.stats.delta
        # get start and end of signal
        i_start, i_end = start_end(tr)
        # trim data
        tr.trim(starttime=starttime + i_start * dt,
                endtime=starttime + i_end * dt)
        # now calculate the attributes
        kurt = kurtosis(tr.data)
        env = envelope(tr.data)
        max_mean = np.max(env) / np.mean(env)
        dur = (i_end - i_start) * dt
        X[i, 0] = kurt
        X[i, 1] = max_mean
        X[i, 2] = dominant_period(st)
        X[i, 3] = dur

    return X, y, names
  def test_trace(self):

    t = np.arange(0,0.5,self.dt)
    impuls = np.zeros(len(t))
    impuls[0.08/self.dt] = 1
    impuls[0.12/self.dt] = -1
    impuls[0.235/self.dt] = 1
    impuls[0.265/self.dt] = -1
    impuls[0.39/self.dt] = 1
    impuls[0.41/self.dt] = -1
    trace = np.convolve(impuls,self.ricker,mode='same')
    

    import matplotlib.pyplot as plt
    fig = plt.figure()
    fig.set_facecolor('white')
    ax1 = fig.add_subplot(211)
    ax1.plot(t,impuls,'k')
    ax2 = fig.add_subplot(212)
    ax2.plot(trace,'k')


    from obspy.signal import filter
    env = filter.envelope(trace)
    ifreq = instant_freq(trace, self.dt, np.fft.fft(trace), 0, len(trace)-1, plot=True)
    ibw = instant_bw(trace, env, self.dt, np.fft.fft(trace), ponset = 0, tend=len(trace), plot=True)
Ejemplo n.º 10
0
def get_freq_band_stuff(tr, FFI=[0.1, 1, 3, 10, 20], FFE=None, corners=2):

    # FFI gives the left (low-frequency) side of the butterworth filter to use
    # FFE gives the right (high-frequency) side of the butterworth filter to use

    sps = tr.stats.sampling_rate
    dt = tr.stats.delta
    NyF = sps / 2.

    nf = len(FFI)
    if FFE is None:
        FFE = np.empty(nf, dtype=float)
        FFE[0:-1] = FFI[1:nf]
        FFE[-1] = 0.99 * NyF

    ES = np.empty(nf, dtype=float)
    KurtoF = np.empty(nf, dtype=float)

    for j in xrange(nf):
        tr_filt = tr.copy()
        tr_filt.filter('bandpass',
                       freqmin=FFI[j],
                       freqmax=FFE[j],
                       corners=corners)
        ES[j] = 2 * np.log10(np.trapz(envelope(tr_filt.data), dx=dt))
        KurtoF[j] = kurtosis(tr_filt.data, fisher=False)

    return ES, KurtoF
Ejemplo n.º 11
0
 def test_gaussian_kurtosis(self):
   data = np.array([gauss(5,1) for i in range(100000)])
   from obspy.signal import filter
   env = filter.envelope(data)
   KurtosisEnvelope = kurtosis_envelope(env)
   KurtosisEnvelopeTest = 3
   self.assertAlmostEquals(KurtosisEnvelope, KurtosisEnvelopeTest, places = 1)
Ejemplo n.º 12
0
def Envelope(tr,plot):
    
    """Envelope gives the enveloppe of a signal (trace) and return the sum of this enveloppe
    * input : 
        - tr : type trace; trace 
        -plot type bool; if True waves and envelope are plotted 
    *output : 
        - Envelope : envelope of the signal 
        - t: type list; time where data are computed
        - SumEnvelope : type float;  Sum of the data values of the enveloppe
        - MaxEnv  ; type float; maximum of the envelope
    *exemple :
        Envelope, t, SumEnvelope = Envelope(tr)
    """
    Envelope = envelope(tr.data)
    npts = tr.stats.npts
    fs = tr.stats.sampling_rate
    t = np.arange(0,npts/fs,1/fs)
    #integration of the envelope
    SumEnvelope = sum(Envelope)
    #max~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    EnvMax = max(Envelope)
    indexmax= np.argwhere (Envelope==EnvMax)
    if plot==True: 
        plt.figure()
        plt.plot(t,tr.data )
        plt.plot(t, Envelope, '.g')
    print  EnvMax,indexmax
    return Envelope, t, SumEnvelope, EnvMax
Ejemplo n.º 13
0
 def _xlim_from_envelope(self, data, dt):
     """
     Get rough bounds for the xlimits by looking at waveform envelopes
     :return:
     """
     env = envelope(data)
     idx = np.where(env >= env.std())[0] * dt
     return [np.floor(idx[0]) - 20, np.ceil(idx[-1]) + 20]
Ejemplo n.º 14
0
  def test_ricker(self):

    from obspy.signal import filter
    env = filter.envelope(self.ricker)

    tf = np.fft.fft(self.ricker)
    ifreq = instant_freq(self.ricker, self.dt, tf, 50, 150, plot=True)
    ibw = instant_bw(self.ricker, env, self.dt, tf, plot=True)
Ejemplo n.º 15
0
    def test_ricker(self):

        from obspy.signal import filter
        env = filter.envelope(self.ricker)

        tf = np.fft.fft(self.ricker)
        ifreq = instant_freq(self.ricker, self.dt, tf, 50, 150, plot=False)
        ibw = instant_bw(self.ricker, env, self.dt, tf, plot=False)
Ejemplo n.º 16
0
    def process_envelope(self):
        """
        Runs envelope processing on a waveform. Replaces self.trace and sets
        self.proc to "Envelope'.

        """
        xs = filter.envelope(self.values)
        self.trace.data = xs
        self.proc = "Envelope"
Ejemplo n.º 17
0
 def get_var_data(self, P_start_time, full_obs_stream):
     max_amp = 0
     noise_est = full_obs_stream.copy()
     for trace in noise_est:
         env = envelope(trace.data)
         trace.data = env
         trace.trim(starttime=trace.meta.starttime, endtime=P_start_time)
         max_amp += max(trace.data)
     return max_amp / (len(noise_est) * 2)
Ejemplo n.º 18
0
 def test_gaussian_kurtosis(self):
     data = np.array([gauss(5, 1) for i in range(100000)])
     from obspy.signal import filter
     env = filter.envelope(data)
     KurtosisEnvelope = kurtosis_envelope(env)
     KurtosisEnvelopeTest = 3
     self.assertAlmostEquals(KurtosisEnvelope,
                             KurtosisEnvelopeTest,
                             places=1)
Ejemplo n.º 19
0
    def process_envelope(self):
        """
        Runs envelope processing on a waveform. Replaces self.trace and sets
        self.proc to "Envelope'.

        """
        xs = filter.envelope(self.values)
        self.trace.data = xs
        self.proc = "Envelope"
Ejemplo n.º 20
0
def envelope(n, e, z, fcorner=None, Ncomponents=3):
    '''
    Build the envelope of a 3- or 2-component accelerogram using the Hilbert
    transform as implemented in obspy.signal.filter
    '''

    from obspy.signal.filter import envelope
    from mudpy.forward import lowpass

    #remove pre-event baseline
    n[0].data -= n[0].data[0]
    e[0].data -= e[0].data[0]
    z[0].data -= z[0].data[0]

    #Initalize per-component envelopes
    nenv = n.copy()
    eenv = e.copy()
    zenv = z.copy()

    #make envelopes
    nenv[0].data = envelope(n[0].data)
    eenv[0].data = envelope(e[0].data)
    zenv[0].data = envelope(z[0].data)

    #combine envelopes into one
    aenv = n.copy()
    aenvf = n.copy()

    #How many components
    if Ncomponents == 3:
        aenv[0].data = (nenv[0].data**2 + eenv[0].data**2 +
                        zenv[0].data**2)**0.5
    else:
        aenv[0].data = (nenv[0].data**2 + eenv[0].data**2)**0.5

    #Low pass filter envelope
    if fcorner == None:
        aenvf = aenv.copy()
    else:
        aenvf[0].data = lowpass(aenv[0].data, fcorner,
                                1. / aenv[0].stats.delta, 2)

    return aenvf
def process_envelope(tr,w=51):
  """
  Runs envelope processing on a waveform.
  w is the length of the sliding window
  """
  from obspy.signal import filter
  env = filter.envelope(tr)
  s = np.r_[env[w-1:0:-1],env,env[-1:-w:-1]]
  window = np.ones(w,'d')
  return np.convolve(window/window.sum(),s,mode='valid')[w/2:-w/2]
Ejemplo n.º 22
0
def process_envelope(tr, w=51):
    """
  Runs envelope processing on a waveform.
  w is the length of the sliding window
  """
    from obspy.signal import filter
    env = filter.envelope(tr)
    s = np.r_[env[w - 1:0:-1], env, env[-1:-w:-1]]
    window = np.ones(w, 'd')
    return np.convolve(window / window.sum(), s, mode='valid')[w / 2:-w / 2]
Ejemplo n.º 23
0
def transfer_data_into_envelope(data):
    t1 = time.time()
    data_env = np.zeros(data.shape)
    for idx1 in range(data.shape[0]):
        for idx2 in range(data.shape[1]):
            data_env[idx1, idx2, :] = envelope(data[idx1, idx2, :])
    t2 = time.time()
    print("Time used to convert envelope: %.2f sec" % (t2 - t1))

    return data_env
Ejemplo n.º 24
0
def envelope(n,e,z,fcorner=None,Ncomponents=3):
    '''
    Build the envelope of a 3- or 2-component accelerogram using the Hilbert
    transform as implemented in obspy.signal.filter
    '''
    
    from obspy.signal.filter import envelope
    from mudpy.forward import lowpass
    
    #remove pre-event baseline    
    n[0].data-=n[0].data[0]
    e[0].data-=e[0].data[0]
    z[0].data-=z[0].data[0]
    
    
    #Initalize per-component envelopes
    nenv=n.copy()
    eenv=e.copy()
    zenv=z.copy()
    
    #make envelopes
    nenv[0].data=envelope(n[0].data)
    eenv[0].data=envelope(e[0].data)
    zenv[0].data=envelope(z[0].data)
    
    #combine envelopes into one     
    aenv=n.copy()
    aenvf=n.copy()
    
    #How many components
    if Ncomponents==3:
        aenv[0].data=(nenv[0].data**2+eenv[0].data**2+zenv[0].data**2)**0.5
    else:
        aenv[0].data=(nenv[0].data**2+eenv[0].data**2)**0.5
    
    #Low pass filter envelope
    if fcorner==None:
        aenvf=aenv.copy()
    else:
        aenvf[0].data=lowpass(aenv[0].data,fcorner,1./aenv[0].stats.delta,2)
        
    return aenvf
Ejemplo n.º 25
0
def max_over_mean(trace):
    """
  Returns the maximum of the envelope of a trace over its mean.
  from Hibert 2012
  """

    e = filter.envelope(trace)
    emax = np.max(e)
    emean = np.mean(e)

    return emax / emean
Ejemplo n.º 26
0
 def calculate_preliminiaries(self):
     """
     Calculates the envelope, STA/LTA and the finds the local extrema.
     """
     logger.info("Calculating envelope of synthetics.")
     self.synthetic_envelope = envelope(self.synthetic.data)
     logger.info("Calculating STA/LTA.")
     self.stalta = sta_lta(self.synthetic_envelope,
                           self.observed.stats.delta,
                           self.config.min_period)
     self.peaks, self.troughs = utils.find_local_extrema(self.stalta)
Ejemplo n.º 27
0
 def process_envelope(self):
   """
   Runs envelope processing on a waveform.
   """
   from obspy.signal import filter
   env = filter.envelope(self.tr)
   # Smooth the envelope
   w = 51 # length of the sliding window
   s = np.r_[env[w-1:0:-1],env,env[-1:-w:-1]]
   window = np.ones(w,'d')
   self.tr_env = np.convolve(window/window.sum(),s,mode='valid')[w/2:-w/2]
Ejemplo n.º 28
0
def max_over_mean(trace):

  """
  Returns the maximum of the envelope of a trace over its mean.
  from Hibert 2012
  """

  e = filter.envelope(trace)
  emax = np.max(e)
  emean = np.mean(e)

  return emax/emean
Ejemplo n.º 29
0
 def process_envelope(self):
     """
 Runs envelope processing on a waveform.
 """
     from obspy.signal import filter
     env = filter.envelope(self.tr)
     # Smooth the envelope
     w = 51  # length of the sliding window
     s = np.r_[env[w - 1:0:-1], env, env[-1:-w:-1]]
     window = np.ones(w, 'd')
     self.tr_env = np.convolve(window / window.sum(), s,
                               mode='valid')[w / 2:-w / 2]
Ejemplo n.º 30
0
def _get_cut_times(config, tr):
    """Get trace cut times between P arrival and end of envelope coda."""
    tr_env = tr.copy()
    # remove the mean...
    tr_env.detrend(type='constant')
    # ...and the linear trend...
    tr_env.detrend(type='linear')
    # ...filter
    freqmin = 1.
    freqmax = 20.
    nyquist = 1./(2. * tr.stats.delta)
    if freqmax >= nyquist:
        freqmax = nyquist * 0.999
        msg = '%s: maximum frequency for bandpass filtering ' % tr.id
        msg += 'in local magnitude computation is larger than or equal '
        msg += 'to Nyquist. Setting it to %s Hz' % freqmax
        logger.warning(msg)
    cosine_taper(tr_env.data, width=config.taper_halfwidth)
    tr_env.filter(type='bandpass', freqmin=freqmin, freqmax=freqmax)
    tr_env.data = envelope(tr_env.data)
    tr_env.data = smooth(tr_env.data, 100)

    # Skip traces which do not have arrivals
    try:
        p_arrival_time = tr.stats.arrivals['P'][1]
    except Exception:
        logger.warning('%s: Trace has no P arrival: skipping trace' % tr.id)
        raise RuntimeError
    t1 = p_arrival_time - config.win_length
    t2 = p_arrival_time + config.win_length

    tr_noise = tr_env.copy()
    tr_signal = tr_env.copy()
    tr_noise.trim(starttime=t1, endtime=p_arrival_time,
                  pad=True, fill_value=0)
    tr_signal.trim(starttime=p_arrival_time, endtime=t2,
                   pad=True, fill_value=0)
    ampmin = tr_noise.data.mean()
    ampmax = tr_signal.data.mean()
    if ampmax <= ampmin:
        logger.warning(
            '%s: Trace has too high noise before P arrival: '
            'skipping trace' % tr.id)
        raise RuntimeError

    trigger = trigger_onset(tr_env.data, ampmax, ampmin,
                            max_len=9e99, max_len_delete=False)[0]
    t0 = p_arrival_time
    t1 = t0 + trigger[-1] * tr.stats.delta
    if t1 > tr.stats.endtime:
        t1 = tr.stats.endtime
    return t0, t1
Ejemplo n.º 31
0
def HVscheme2(st, f0, bazi, astime, aetime, disdeg, eve):

    st2 = finalfilter(st, f0, bazi, astime, aetime, True)
    corrs = []
    win = int(round(1. / f0, 0))
    for window in st2.slide(window_length=win, step=int(round(win / 16., 0))):
        HilbertV = np.imag(hilbert(window.select(component="Z")[0].data))
        lag, corr = xcorr(HilbertV,
                          window.select(component="R")[0].data,
                          5,
                          full_xcorr=False)
        #corr = pearsonr(HilbertV, window.select(component="R")[0].data)
        corrs.append(corr)
    corr = corrs
    HilbertV = np.imag(hilbert(st2.select(component="Z")[0].data))
    oldx = np.asarray(range(
        len(corr))) / (float(len(corr)) / float(len(HilbertV)))
    corr = np.interp(range(len(HilbertV)), oldx, corr)
    env = envelope(st2.select(component="R")[0].data) * envelope(HilbertV)
    HV = envelope(st2.select(component="R")[0].data) / envelope(HilbertV)
    env *= 1. / np.max(np.abs(env))
    #corr *= env

    t = np.asarray(range(len(HilbertV)))

    lim = t[(corr >= .90)]
    if len(lim) == 0:
        return 0., 0., 0.

    HV2 = HV[(corr >= .90)]
    lim = lim[(HV2 <= np.mean(HV2) + 3. * np.std(HV2))
              & (HV2 >= np.mean(HV2) - 3. * np.std(HV2))]
    HV2 = HV2[(HV2 <= np.mean(HV2) + 3. * np.std(HV2))
              & (HV2 >= np.mean(HV2) - 3. * np.std(HV2))]

    mHV = np.mean(HV2)
    stdHV = np.std(HV2)

    return mHV, stdHV, corr
Ejemplo n.º 32
0
def get_all_single_station_attributes(st):

    NaN_value = -12345.0
    min_length = 11

    # set attribute names
    att_names = att_names_single_station_1D

    if st is None or len(st) == 0:
        # return names of attributes and NaN values
        att = np.ones((1, len(att_names)), dtype=float) * np.nan
        return att, att_names

    if st[0].stats.npts < min_length:
        # return names of attributes and NaN values
        att = np.ones((1, len(att_names)), dtype=float) * np.nan
        return att, att_names

    # create the amplitude trace and its envelope
    if len(st) == 3:
        att_names.extend(list(['rectilinP', 'azimuthP', 'dipP', 'Plani']))
        amp_data = np.sqrt(st[0].data * st[0].data + st[1].data * st[1].data +
                           st[2].data * st[2].data)
        amp_trace = st.select(component="Z")[0].copy()
        amp_trace.data = amp_data
    else:
        try:
            amp_trace = st.select(component="Z")[0]
        except IndexError:
            att = np.ones((1, len(att_names)), dtype=float) * np.nan
            return att, att_names
    env = envelope(amp_trace.data)

    if len(st) == 3:
        att_names.extend(list(['rectilinP', 'azimuthP', 'dipP', 'Plani']))
    att = np.empty((1, len(att_names)), dtype=float)

    att[0, 0:1] = get_AsDec(amp_trace, env)
    att[0, 1:2] = get_Duration(amp_trace)
    att[0, 2:5] = get_RappStuff(amp_trace, env)
    att[0, 5:9] = get_KurtoSkew(amp_trace, env)
    att[0, 9:11] = get_CorrStuff(amp_trace)
    ES, KurtoF = get_freq_band_stuff(amp_trace)
    att[0, 11:16] = ES[:]
    att[0, 16:21] = KurtoF[:]
    att[0, 21:38] = get_full_spectrum_stuff(amp_trace)
    att[0, 38:40] = get_AmpStuff(amp_trace)
    if len(st) == 3:
        att[0, 40:44] = get_polarization_stuff(st, env)

    return att, att_names
Ejemplo n.º 33
0
    def filter(self, stream, time_at_rec, la_s, lo_s, depth, Rayleigh=True):
        env_stream = Stream()
        dist, az, baz = gps2dist_azimuth(lat1=la_s,
                                         lon1=lo_s,
                                         lat2=self.prior['la_r'],
                                         lon2=self.prior['lo_r'],
                                         a=self.prior['radius'],
                                         f=0)
        if Rayleigh == True:
            phases = self.get_R_phases(time_at_rec)
        else:
            phases = self.get_L_phases(time_at_rec)
        for i, v in enumerate(stream.traces):
            npts = len(v.data)
            trace = stream.traces[i].copy()
            trace.detrend(type="demean")
            trace.interpolate(
                sampling_rate=10. / phases[i]['dt']
            )  # No method specified, so : 'weighted_average_slopes' is used
            trace.filter('highpass', freq=phases[i]['fmin'], zerophase=True)
            trace.filter('lowpass', freq=phases[i]['fmax'], zerophase=True)
            trace.detrend()
            trace.detrend(type="demean")
            env = envelope(trace.data)

            zero_trace = Trace(np.zeros(npts),
                               header={
                                   "starttime": phases[i]['starttime'](dist,
                                                                       depth),
                                   'delta': trace.meta.delta,
                                   "station": trace.meta.station,
                                   "network": trace.meta.network,
                                   "location": trace.meta.location,
                                   "channel": trace.meta.channel,
                                   "instaseis": trace.meta.instaseis
                               })
            env_trace = Trace(env,
                              header={
                                  "starttime": phases[i]['starttime'](dist,
                                                                      depth),
                                  'delta': trace.meta.delta,
                                  "station": trace.meta.station,
                                  "network": trace.meta.network,
                                  "location": trace.meta.location,
                                  "channel": trace.meta.channel,
                                  "instaseis": trace.meta.instaseis
                              })

            env_stream.append(env_trace)

        return env_stream
Ejemplo n.º 34
0
 def test_network_response_plot(self):
     detections = [(self.st[0].stats.starttime + 10).datetime, ]
     false_detections = [(self.st[0].stats.starttime + 20).datetime, ]
     _envelope = self.st.copy()
     for tr in _envelope:
         tr.data = filter.envelope(tr.data)
     envelope = Stream(_envelope[0])
     for tr in envelope[1:]:
         envelope[0].data += tr.data
     envelope.detrend()
     fig = NR_plot(stream=self.st, NR_stream=envelope,
                   detections=detections, false_detections=false_detections,
                   show=False, return_figure=True)
     return fig
Ejemplo n.º 35
0
def SpecWhiten(trace):
    if specWhiten_method == 0:
        return trace
    else:
        dataFFT = np.fft.fft(trace.data)
        if specWhiten_method == 1:
            envelope = filter.envelope(np.abs(dataFFT))
            dataFFT = dataFFT / envelope
        else:
            dataFFT = dataFFT / np.abs(dataFFT)

        trace.data = np.real(np.fft.ifft(dataFFT))

    return trace
Ejemplo n.º 36
0
def stream_envelope(st):
    """ Calculate the envelopes of all traces in a stream.

    It works on a copy of the stream.

    :type st: ::class:`~obspy.core.stream.Stream`
    :param st: Stream fo be used for calculating the envelopes.

    :rtype sst: :class:`~obspy.core.stream.Stream`
    :return: **sst**: envelopes of stream
    """
    for tr in st:
        tr.data = envelope(tr.data)
    return st
Ejemplo n.º 37
0
def get_RappStuff(tr, env=None):

    # get max over mean / median / std
    if env is None:
        env = envelope(tr.data)

    max_env = max(env)
    smooth_norm_env = sp.smooth(env / max_env)

    RappMaxMean = 1. / np.mean(smooth_norm_env)
    RappMaxMedian = 1. / np.median(smooth_norm_env)
    RappMaxStd = 1. / np.std(smooth_norm_env)

    return RappMaxMean, RappMaxMedian, RappMaxStd
Ejemplo n.º 38
0
def get_AsDec(tr, env=None):

    # smooth data using a filter of the same length as the sampling rate
    # to give 1-second smoothing window

    if env is None:
        env = envelope(tr.data)

    smooth_env = sp.smooth(env)

    imax = np.argmax(smooth_env)
    AsDec = (imax + 1) / float(len(tr.data) + 1 - (imax + 1))
    # note : the +1s are to avoid zeros or division by zero

    return AsDec
Ejemplo n.º 39
0
    def calculate_preliminiaries(self):
        """
        Calculates the envelope, STA/LTA and the finds the local extrema.
        """
        logger.info("Calculating envelope of synthetics.")
        self.synthetic_envelope = envelope(self.synthetic.data)
        logger.info("Calculating STA/LTA.")
        self.stalta = sta_lta(self.synthetic_envelope,
                              self.observed.stats.delta,
                              self.config.min_period)
        self.peaks, self.troughs = utils.find_local_extrema(self.stalta)

        if not len(self.peaks) and len(self.troughs):
            return

        if self.ttimes:
            offset = self.event.origin_time - self.observed.stats.starttime
            min_time = self.ttimes[0]["time"] - \
                self.config.max_time_before_first_arrival + offset
            min_idx = int(min_time / self.observed.stats.delta)

            dist_in_km = geodetics.calcVincentyInverse(
                self.station.latitude, self.station.longitude,
                self.event.latitude, self.event.longitude)[0] / 1000.0
            max_time = dist_in_km / self.config.min_surface_wave_velocity + \
                offset + self.config.max_period
            max_idx = int(max_time / self.observed.stats.delta)

            # Reject all peaks and troughs before the minimal allowed start
            # time and after the maximum allowed end time.
            first_trough, last_trough = self.troughs[0], self.troughs[-1]
            self.troughs = self.troughs[(self.troughs >= min_idx) &
                                        (self.troughs <= max_idx)]

            # If troughs have been removed, readd them add the boundaries.
            if len(self.troughs):
                if first_trough != self.troughs[0]:
                    self.troughs = np.concatenate([
                        np.array([min_idx], dtype=self.troughs.dtype),
                        self.troughs])
                if last_trough != self.troughs[-1]:
                    self.troughs = np.concatenate([
                        self.troughs,
                        np.array([max_idx], dtype=self.troughs.dtype)])
            # Make sure peaks are inside the troughs!
            min_trough, max_trough = self.troughs[0], self.troughs[-1]
            self.peaks = self.peaks[(self.peaks > min_trough) &
                                    (self.peaks < max_trough)]
Ejemplo n.º 40
0
def make_env(st, lowpass=0.2):
    from obspy.signal.filter import envelope

    for tr in st:
        tr.data = envelope(tr.data)
    st.filter('lowpass', freq=lowpass)

    sr = st[0].stats.sampling_rate

    if sr == 25:
        st.decimate(5)
    elif sr == 20:
        st.decimate(2)
        st.decimate(2)

    return st
Ejemplo n.º 41
0
def start_end(tr):
    """
    Returns start and end times of signal using signal 2 noise ratio
    """

    # set noise level as 5th percentile on envelope amplitudes
    env = envelope(tr.data)
    env = smooth(env, 100)
    noise_level = np.percentile(env, 5.0)

    # trigger
    t_list = triggerOnset(env, 1.5 * noise_level, 1.5 * noise_level)
    i_start = t_list[0][0]
    i_end = t_list[0][1]

    return i_start, i_end
Ejemplo n.º 42
0
    def envelope(self, traces=None):
        """
        Take the envelope of the data.
        
        :param traces: List of ``SEGYTrace`` objects with data to operate on.
            Default is to operate on all traces.

        Computes the envelope of the given function. The envelope is determined by
        adding the squared amplitudes of the function and it's Hilbert-Transform
        and then taking the square-root. (See [Kanasewich1981]_)
        The envelope at the start/end should not be taken too seriously.
        """
        if not traces:
            traces = self.traces
        for tr in traces:
            tr.data = filter.envelope(tr.data)
Ejemplo n.º 43
0
def getAmplitudeEnvelopeFeaturesReal(traceName = '/home/anton/WI_Models/AllTraces/M0055_station_0003_location_Class036_channel_Z.mseed',
                                     st=1.2,fn=2.2,fmin=1,fmax=10,starttime=None,endtime=None ):
    import obspy 
    import numpy as np
    from obspy.signal.filter import envelope
    from scipy.integrate import simps
    from scipy.stats import kurtosis
    trace = obspy.read(traceName)
    if trace[0].stats.starttime.year < starttime.year:
        return None
    trace.taper(type= "hann",max_percentage=0.2)    

    trace.filter(type='bandpass',freqmin=fmin,freqmax=fmax)
    trace.trim(starttime = starttime,endtime = endtime)
    trace.normalize()
    trace.taper(type= "cosine",max_percentage=0.05)    
    trace.plot(type='relative')
    #data_envelopeM = obspy.signal.filter.envelope(trace.data)
    TraceCopy  = trace[0].copy()
    envTrace = trace[0].copy()
   
    envTrace.data = envelope(TraceCopy.data)
    # Feature 0 : peakedness 
    KurtosisEnvelopeDiff =kurtosis(np.diff(envTrace.data))
    # Feature 1
    StdEnvelope = envTrace.data.std()
    # Feature 2
    MeanEnvelope = envTrace.data.mean()
    
    
    envTrace.trim(starttime = trace[0].stats.starttime + st,endtime = trace[0].stats.starttime + fn)
    TraceCopy.trim(starttime = trace[0].stats.starttime + st,endtime = trace[0].stats.starttime + fn)
    #Integrate the envelope in the region:
    # Feature 3
    EnvelopeIntegral = simps(y = envTrace.data,x = envTrace.times()) / (envTrace.stats.endtime - envTrace.stats.starttime)
    EnergyInTheSubTrace = simps(y = TraceCopy.data**2,x = TraceCopy.times())
    EnergyWholeTrace = simps(y = trace[0].data**2,x = trace[0].times())
    
    #Feature 4
    EnergyRatio = EnergyInTheSubTrace/EnergyWholeTrace
    #Feature 5 
    zc= np.sign( np.diff(envTrace.data) )  
    zc[zc==0] = -1     # replace zeros with -1  
    zcFeature = np.where(np.diff(zc))[0].shape[0] 
    
    return KurtosisEnvelopeDiff,StdEnvelope,MeanEnvelope,EnvelopeIntegral,EnergyRatio,zcFeature
Ejemplo n.º 44
0
def get_KurtoSkew(tr, env=None):

    if env is None:
        env = envelope(tr.data)

    max_env = max(env)
    smooth_norm_env = sp.smooth(env / max_env)

    max_sig = max(tr.data)
    norm_sig = tr.data / max_sig

    KurtoEnv = kurtosis(smooth_norm_env, fisher=False)
    KurtoSig = kurtosis(norm_sig, fisher=False)

    SkewnessEnv = skew(smooth_norm_env)
    SkewnessSig = skew(norm_sig)

    return KurtoEnv, KurtoSig, SkewnessEnv, SkewnessSig
Ejemplo n.º 45
0
 def test_envelopeVsPitsa(self):
     """
     Test Envelope filter against PITSA.
     The rms is not so good, but the fit is still good in most parts.
     """
     # load test file
     filename = os.path.join(self.path, 'rjob_20051006.gz')
     with gzip.open(filename) as f:
         data = np.loadtxt(f)
     # filter trace
     datcorr = envelope(data)
     # load pitsa file
     filename = os.path.join(self.path, 'rjob_20051006_envelope.gz')
     with gzip.open(filename) as f:
         data_pitsa = np.loadtxt(f)
     # calculate normalized rms
     rms = np.sqrt(np.sum((datcorr - data_pitsa) ** 2) /
                   np.sum(data_pitsa ** 2))
     self.assertEqual(rms < 1.0e-02, True)
Ejemplo n.º 46
0
def slope_distribution(fkdata, prange, pdelta, peakpick=None, delta_threshold=0, smoothing=False, interactive=False):
	"""
	Generates a distribution of slopes in a range given in prange.
	Needs fkdata as input. 

	k on the y-axis fkdata[0]
	f on the x-axis fkdata[1]

	:param fkdata: array-like dataset transformed to f-k domain.

	:param prange: range of slopes, with minimum and maximum value
				   Slopes are defined as nondimensional, by the formula

							m = 1/2 * (ymax - ymin)/(xmax - xmin),

				   respectively

							p = 1/2 * (kmax - kmin)/(fmax - fmin).

				   The factor 1/2 is due too the periodicity in the f-k domain.
				
	:type prange: array-like, tuple or list

	:param pdelta: stepsize of slope-interval
	:type pdelta: int
	
	:param peakpick: method to pick the peaks of distribution possible is:
						mod - minimum mean of distribution (default)
						mop  - minimum mean of peaks
						float - minimum float value
						None - pick all peaks
					 
	:type peakpick: int or float
	
	:param delta_threshold: Value to lower manually 
	:type delta_threshold: int

	:param smoothing: Parameter to smooth distribution
	:type smoothing: float
	
	:param interactive: If True, picking by hand is enabled.
	:type interactive: boolean

	returns:

	:param MD: Magnitude distribution of the slopes p
	:type MD: 1D array, numpy.ndarray

	:param prange: Range of slopes
	:type prange: 1D array, numpy.ndarray


	:param peaks: position ( peaks[0] ) and value ( peaks[1] ) of the peaks.
	:type peaks: numpy.ndarray
	"""

	M = fkdata.copy()
	Mt = M.conj().transpose()
	fk_shift =	np.zeros(M.shape).astype('complex')
	
	pnorm = 1/2. * ( float(M.shape[0])/float(M.shape[1]) )

	pmin = prange[0]
	pmax = prange[1]
	N = abs(pmax - pmin) / pdelta + 1
	MD = np.zeros(N)
	srange = np.linspace(pmin,pmax,N)

	rend = float( len(srange) )
	for i, delta in enumerate(srange):

		p = delta*pnorm
		for j, trace in enumerate(Mt):
			shift = int(math.floor(p*j))		
			fk_shift[:,j] = np.roll(trace, shift)
		MD[i] = sum(abs(fk_shift[0,:])) / len(fk_shift[0,:])

		prcnt = 100*(i+1) / rend
		print("%i %% done" % prcnt, end="\r")
		sys.stdout.flush()	

	if interactive:
		
		peaks = pick_data(srange, MD, 'Slope in fk-domain', 'Magnitude of slope', 'Magnitude-Distribution')
		for j,pairs in enumerate(peaks):
			if len(pairs) > 1:
				maxm = 0
				for i, item in enumerate(pairs):
					if item[1] > maxm:
						maxm = item[1]
						idx = i
				peaks[j] = [(pairs[idx][0], maxm)]
		peaks = np.array(peaks).reshape(len(peaks), 2).transpose()

	else:
		if smoothing:
			blen = int(abs(pmin-pmax))*smoothing
			if blen < 1 : blen=1
			MDconv = sp.signal.convolve(MD, sp.signal.boxcar(blen),mode=1)
		else:
			MDconv=MD
		peaks_first = find_peaks(MDconv, srange, peakpick='All', mindist=0.3)
		peaks_first[1] = peaks_first[1]/peaks_first.max()*MD.max()

		# Calculate envelope of the picked peaks, and pick the 
		# peaks of the envelope.
		peak_env = obsfilter.envelope( peaks_first[1] )
		peaks_tmp = find_peaks( peaks_first[1], peaks_first[0], peak_env.mean() + delta_threshold)		
	
		if peaks_tmp[0].size > 4:
			peaks = find_peaks( peaks_tmp[1], peaks_tmp[0], 0.5 + delta_threshold)
		else:
			peaks = peaks_tmp
	return MD, srange, peaks
Ejemplo n.º 47
0
def cross_net(stream, env=False, debug=0, master=False):
    """
    Generate picks using a simple envelope cross-correlation.
    Picks are made for each channel based on optimal moveout \
    defined by maximum cross-correlation with master trace.  Master trace \
    will be the first trace in the stream.

    :type stream: :class: obspy.Stream
    :param stream: Stream to pick
    :type env: bool
    :param env: To compute cross-correlations on the envelope or not.
    :type debug: int
    :param debug: Debug level from 0-5
    :type master: obspy.Trace
    :param master: Trace to use as master, if False, will use the first trace \
            in stream.

    :returns: obspy.core.event.Event

    .. rubric:: Example

    >>> from obspy import read
    >>> from eqcorrscan.utils.picker import cross_net
    >>> st = read()
    >>> event = cross_net(st, env=True)
    >>> event.creation_info.author
    'EQcorrscan'
    """
    from obspy.signal.cross_correlation import xcorr
    from obspy.signal.filter import envelope
    from obspy import UTCDateTime
    from obspy.core.event import Event, Pick, WaveformStreamID
    from obspy.core.event import CreationInfo, Comment, Origin
    import matplotlib.pyplot as plt
    import numpy as np

    event = Event()
    event.origins.append(Origin())
    event.creation_info = CreationInfo(author='EQcorrscan',
                                       creation_time=UTCDateTime())
    event.comments.append(Comment(text='cross_net'))
    samp_rate = stream[0].stats.sampling_rate
    if not env:
        if debug > 2:
            print('Using the raw data')
        st = stream.copy()
        st.resample(samp_rate)
    else:
        st = stream.copy()
        if debug > 2:
            print('Computing envelope')
        for tr in st:
            tr.resample(samp_rate)
            tr.data = envelope(tr.data)
    if debug > 2:
        st.plot(equal_scale=False, size=(800, 600))
    if not master:
        master = st[0]
    else:
        master = master
    master.data = np.nan_to_num(master.data)
    for i, tr in enumerate(st):
        tr.data = np.nan_to_num(tr.data)
        if debug > 2:
            msg = ' '.join(['Comparing', tr.stats.station, tr.stats.channel,
                            'with the master'])
            print(msg)
        shift_len = int(0.3 * len(tr))
        if debug > 2:
            print('Shift length is set to ' + str(shift_len) + ' samples')
        if debug > 3:
            index, cc, cc_vec = xcorr(master, tr, shift_len, full_xcorr=True)
            cc_vec = np.nan_to_num(cc_vec)
            if debug > 4:
                print(cc_vec)
            fig = plt.figure()
            ax1 = fig.add_subplot(211)
            x = np.linspace(0, len(master) / samp_rate,
                            len(master))
            ax1.plot(x, master.data / float(master.data.max()), 'k',
                     label='Master')
            ax1.plot(x + (index / samp_rate), tr.data / float(tr.data.max()),
                     'r', label='Slave shifted')
            ax1.legend(loc="lower right", prop={'size': "small"})
            ax1.set_xlabel("time [s]")
            ax1.set_ylabel("norm. amplitude")
            ax2 = fig.add_subplot(212)
            print(len(cc_vec))
            x = np.linspace(0, len(cc_vec) / samp_rate, len(cc_vec))
            ax2.plot(x, cc_vec, label='xcorr')
            # ax2.set_ylim(-1, 1)
            # ax2.set_xlim(0, len(master))
            plt.show()
        index, cc = xcorr(master, tr, shift_len)
        wav_id = WaveformStreamID(station_code=tr.stats.station,
                                  channel_code=tr.stats.channel,
                                  network_code=tr.stats.network)
        event.picks.append(Pick(time=tr.stats.starttime + (index / tr.stats.sampling_rate),
                                waveform_id=wav_id,
                                phase_hint='S',
                                onset='emergent'))
        if debug > 2:
            print(event.picks[i])
    event.origins[0].time = min([pick.time for pick in event.picks]) - 1
    event.origins[0].latitude = float('nan')
    event.origins[0].longitude = float('nan')
    # Set arbitrary origin time
    del st
    return event
Ejemplo n.º 48
0
def cross_net(stream, env=False, debug=0, master=False):
    r"""Function to generate picks for each channel based on optimal moveout \
    defined by maximum cross-correaltion with master trace.  Master trace \
    will be the first trace in the stream.

    :type stream: :class: obspy.Stream
    :param stream: Stream to pick
    :type envelope: bool
    :param envelope: To compute cross-correlations on the envelope or not.
    :type debug: int
    :param debug: Debug level from 0-5
    :type master: obspy.Trace
    :param master: Trace to use as master, if False, will use the first trace \
            in stream.

    :returns: list of pick class
    """
    from obspy.signal.cross_correlation import xcorr
    from obspy.signal.filter import envelope
    from eqcorrscan.utils.Sfile_util import PICK
    import matplotlib.pyplot as plt
    import numpy as np
    picks = []
    samp_rate = stream[0].stats.sampling_rate
    if not env:
        if debug > 2:
            print('Using the raw data')
        st = stream.copy()
        st.resample(samp_rate)
    else:
        st = stream.copy()
        if debug > 2:
            print('Computing envelope')
        for tr in st:
            tr.resample(samp_rate)
            tr.data = envelope(tr.data)
    if debug > 2:
        st.plot(equal_scale=False, size=(800, 600))
    if not master:
        master = st[0]
    else:
        master = master
    master.data = np.nan_to_num(master.data)
    for tr in st:
        tr.data = np.nan_to_num(tr.data)
        if debug > 2:
            msg = ' '.join(['Comparing', tr.stats.station, tr.stats.channel,
                            'with the master'])
            print(msg)
        shift_len = int(0.3 * len(tr))
        if debug > 2:
            print('Shift length is set to ' + str(shift_len) + ' samples')
        if debug > 3:
            index, cc, cc_vec = xcorr(master, tr, shift_len, full_xcorr=True)
            cc_vec = np.nan_to_num(cc_vec)
            if debug > 4:
                print(cc_vec)
            fig = plt.figure()
            ax1 = fig.add_subplot(211)
            x = np.linspace(0, len(master) / samp_rate,
                            len(master))
            ax1.plot(x, master.data / float(master.data.max()), 'k',
                     label='Master')
            ax1.plot(x + (index / samp_rate), tr.data / float(tr.data.max()),
                     'r', label='Slave shifted')
            ax1.legend(loc="lower right", prop={'size': "small"})
            ax1.set_xlabel("time [s]")
            ax1.set_ylabel("norm. amplitude")
            ax2 = fig.add_subplot(212)
            print(len(cc_vec))
            x = np.linspace(0, len(cc_vec) / samp_rate, len(cc_vec))
            ax2.plot(x, cc_vec, label='xcorr')
            # ax2.set_ylim(-1, 1)
            # ax2.set_xlim(0, len(master))
            plt.show()
        index, cc = xcorr(master, tr, shift_len)
        pick = PICK(station=tr.stats.station,
                    channel=tr.stats.channel,
                    impulsivity='E',
                    phase='S',
                    weight='1',
                    time=tr.stats.starttime + (index / tr.stats.sampling_rate))
        if debug > 2:
            print(pick)
        picks.append(pick)
    del st
    return picks
Ejemplo n.º 49
0
from obspy.core import read
from obspy.signal.filter import envelope
import matplotlib.pyplot as plt
import numpy as np

st = read('http://examples.obspy.org/COP.BHZ.DK.2009.050')
tr = st[0]

tr.trim(starttime=tr.stats.starttime, endtime=tr.stats.starttime+60*4)
tr.filter('lowpass', freq=.2)
env = envelope(tr.data)

t = np.linspace(0, 1, len(env))

fig = plt.figure()
ax = fig.gca()

ax.plot(t, tr.data, alpha=.6, color='k', lw=.75)

ax.set_title('')
ax.plot(t, env, linestyle='-', color='k', label='Envelope')
#ax.legend(loc=1)
ax.set_xticklabels('')
ax.set_yticklabels('')

ax.set_xlabel('Zeit')
ax.set_ylabel('Amplitude')

fig.set_size_inches(10, 3)
fig.savefig('../envelope.png', dpi=150)
Ejemplo n.º 50
0
print(dt)
df = 1.0 / dt
t1 = 60 * dt

print(dt)
print(len(data[1].data))
data.plot()
# trN=data[1].copy()

trNfil = data.copy()
# trNfil.filter('highpass',freq=0.5,corners=2,zerophase=True)
trNfil.filter("bandpass", freqmin=1, freqmax=20, corners=2, zerophase=True)
trNfil.taper(type="cosine", max_percentage=0.05)
cft = classicSTALTA(trNfil[2].data, int(4 / dt), int(30 / dt))

envel = envelope(trNfil[2].data)
plt.plot(trNfil[2].data)
plt.plot(envel, c="r")
plt.xlim(7500, 8000)
plt.show


# In[48]:

tmp = trNfil[0].copy()
tmp.spectrogram(log=True)


# In[4]:

Ejemplo n.º 51
0
 def process_envelope(self):
   """
   Runs envelope processing on a waveform.
   """
   from obspy.signal import filter
   self.tr_env = filter.envelope(self.tr)