def getMetrics(trace):
    data = trace.data
    mean = data.mean()
    median = np.median(data)
    stdv = data.std()
    maximum = np.amax(data)
    trace.taper(type='hamming', max_percentage=0.05, max_length=5)
    data = trace.data
    repFreq = central_frequency_unwindowed(data, df)
    filtered = bandpass(data, 0.01, 1.5625, df)
    sumEnergy = np.sum(
        welch(filtered, np.hamming(len(data)), next_pow_2(len(data))))
    return [mean, median, stdv, maximum, repFreq, sumEnergy]
def preprocess(df):
    df.drop([
        'receiver_latitude', 'receiver_longitude', 'receiver_elevation_m',
        'p_arrival_sample', 'p_travel_sec', 's_arrival_sample',
        'source_origin_time', 'source_latitude', 'source_longitude',
        'source_depth_km'
    ],
            axis=1,
            inplace=True)
    #     Degree of rectiliniarity (polarization)
    print('     Processing - Degree of rectiliniarity (polarization)')
    df['rect_azimuth'], df['rect_incidence'], df['rect_rectilinearity'], df[
        'rect_planarity'] = zip(
            *df.apply(lambda x: flinn([x['Z'], x['N'], x['E']]), axis=1))

    # trace-by-trace features
    print('     Starting Trace-By-Trace feature processing')
    trace_list = ['E', 'N', 'Z']
    for tl in trace_list:
        #     SPECTRAL CENTROID
        print('          Processing Spectral Centroid')
        df['spectral_centroid_{}'.format(tl)] = df[tl].apply(
            _spectral_centroid)
        #     RMS of frequency amplitude
        print('          RMS of frequency amplitude')
        df['rms_freq_amp_{}'.format(tl)] = df[tl].apply(
            lambda x: np.sqrt(np.mean(np.square(np.real(np.fft.fft(x))))))
        #     Maximum power of frequency amplitude
        print('          Maximum power of frequency amplitude')
        df['max_power_freq_amp_{}'.format(tl)] = df[tl].apply(
            lambda x: np.sqrt(
                signal.periodogram(x, 100, 'flattop', scaling='spectrum')[1].
                max()))
        #     Dominant frequency
        print('          Dominant frequency')
        df['dominant_freq_{}'.format(tl)] = df[tl].apply(
            lambda x: central_frequency_unwindowed(x, fs=100))

#     return trace_id and model columns
    return df[[
        'trace_id', 'snr_db_E', 'snr_db_N', 'snr_db_Z', 'spectral_centroid_E',
        'spectral_centroid_N', 'spectral_centroid_Z', 'rect_azimuth',
        'rect_incidence', 'rect_rectilinearity', 'rect_planarity',
        'rms_freq_amp_E', 'rms_freq_amp_N', 'rms_freq_amp_Z',
        'max_power_freq_amp_E', 'max_power_freq_amp_N', 'max_power_freq_amp_Z',
        'dominant_freq_E', 'dominant_freq_N', 'dominant_freq_Z'
    ]]
Ejemplo n.º 3
0
def plotBandSpec(trace, mode='save', low=24.99, high=0.001):
    #copy the data
    df = 50
    #demean, detrend, bandpass filter
    trace.detrend('demean')
    trace.detrend('linear')
    trace.filter('bandpass',
                 freqmin=high,
                 freqmax=low,
                 corners=2,
                 zerophase=True)

    traceCopy = trace.copy()
    data = traceCopy.data
    repFreq = central_frequency_unwindowed(data, df)
    bw = bandwidth(data, df)
    print("Central frequency: " + str(repFreq) + "\nBandwidth: " + str(bw))
Ejemplo n.º 4
0
def preprocess(df):
    # Rolling AVG traces
    print('Calculate rolling Avg')
    df['E_MA250'] = df['E'].apply(lambda x: moving_average(x, 250))
    df['N_MA250'] = df['N'].apply(lambda x: moving_average(x, 250))
    df['Z_MA250'] = df['Z'].apply(lambda x: moving_average(x, 250))
    df['E_MA1000'] = df['E'].apply(lambda x: moving_average(x, 1000))
    df['N_MA1000'] = df['N'].apply(lambda x: moving_average(x, 1000))
    df['Z_MA1000'] = df['Z'].apply(lambda x: moving_average(x, 1000))

    #     Degree of rectiliniarity (polarization)
    print('     Processing - Degree of rectiliniarity (polarization)')
    df['rect_azimuth'], df['rect_incidence'], df['rect_rectilinearity'], df[
        'rect_planarity'] = zip(
            *df.apply(lambda x: flinn([x['Z'], x['N'], x['E']]), axis=1))
    df['rect_azimuth_MA250'], df['rect_incidence_MA250'], df[
        'rect_rectilinearity_MA250'], df['rect_planarity_MA250'] = zip(
            *df.apply(
                lambda x: flinn([x['Z_MA250'], x['N_MA250'], x['E_MA250']]),
                axis=1))
    df['rect_azimuth_MA1000'], df['rect_incidence_MA1000'], df[
        'rect_rectilinearity_MA1000'], df['rect_planarity_MA1000'] = zip(
            *df.apply(
                lambda x: flinn([x['Z_MA1000'], x['N_MA1000'], x['E_MA1000']]),
                axis=1))

    # trace-by-trace features
    print('     Starting Trace-By-Trace feature processing')
    trace_list = ['E', 'N', 'Z']
    # Envelope similarity
    print('          Processing - Envelope Similarity')
    for tl in trace_list:
        df['{}_env_sim_deep_max'.format(tl)], df['{}_env_sim_deep_mean'.format(
            tl)], df['{}_env_sim_shallow_max'.format(tl)], df[
                '{}_env_sim_shallow_mean'.format(tl)] = zip(
                    *df[tl].apply(lambda x: envelope_similarity(x)))

    trace_list_MA = [
        'E', 'N', 'Z', 'E_MA250', 'N_MA250', 'Z_MA250', 'E_MA1000', 'N_MA1000',
        'Z_MA1000'
    ]
    for tl in trace_list_MA:
        #     SPECTRAL CENTROID
        print('          Processing Spectral Centroid - {}'.format(tl))
        df['spectral_centroid_{}'.format(tl)] = df[tl].apply(
            _spectral_centroid)
        #     RMS of frequency amplitude
        print('          RMS of frequency amplitude - {}'.format(tl))
        df['rms_freq_amp_{}'.format(tl)] = df[tl].apply(
            lambda x: np.sqrt(np.mean(np.square(np.real(np.fft.fft(x))))))
        #     Maximum power of frequency amplitude
        print('          Maximum power of frequency amplitude - {}'.format(tl))
        df['max_power_freq_amp_{}'.format(tl)] = df[tl].apply(
            lambda x: np.sqrt(
                signal.periodogram(x, 100, 'flattop', scaling='spectrum')[1].
                max()))
        #     Dominant frequency
        print('          Dominant frequency - {}'.format(tl))
        df['dominant_freq_{}'.format(tl)] = df[tl].apply(
            lambda x: central_frequency_unwindowed(x, fs=100))
        #     Waveform correlation
        print('          Waveform Correlation  - {}'.format(tl))
        df['xcor_{}_deep_max'.format(tl)], df['xcor_{}_deep_mean'.format(
            tl)], df['xcor_{}_shallow_max'.format(tl)], df[
                'xcor_{}_shallow_mean'.format(tl)] = zip(
                    *df[tl].apply(lambda x: waveform_xc_properties(x)))

#     return trace_id and model columns
    return df[[
        'trace_id', 'spectral_centroid_E', 'spectral_centroid_N',
        'spectral_centroid_Z', 'spectral_centroid_E_MA250',
        'spectral_centroid_N_MA250', 'spectral_centroid_Z_MA250',
        'spectral_centroid_E_MA1000', 'spectral_centroid_N_MA1000',
        'spectral_centroid_Z_MA1000', 'rect_azimuth', 'rect_incidence',
        'rect_rectilinearity', 'rect_planarity', 'rect_azimuth_MA250',
        'rect_incidence_MA250', 'rect_rectilinearity_MA250',
        'rect_planarity_MA250', 'rect_azimuth_MA1000', 'rect_incidence_MA1000',
        'rect_rectilinearity_MA1000', 'rect_planarity_MA1000',
        'rms_freq_amp_E', 'rms_freq_amp_N', 'rms_freq_amp_Z',
        'rms_freq_amp_E_MA250', 'rms_freq_amp_N_MA250', 'rms_freq_amp_Z_MA250',
        'rms_freq_amp_E_MA1000', 'rms_freq_amp_N_MA1000',
        'rms_freq_amp_Z_MA1000', 'max_power_freq_amp_E',
        'max_power_freq_amp_N', 'max_power_freq_amp_Z',
        'max_power_freq_amp_E_MA250', 'max_power_freq_amp_N_MA250',
        'max_power_freq_amp_Z_MA250', 'max_power_freq_amp_E_MA1000',
        'max_power_freq_amp_N_MA1000', 'max_power_freq_amp_Z_MA1000',
        'dominant_freq_E', 'dominant_freq_N', 'dominant_freq_Z',
        'dominant_freq_E_MA250', 'dominant_freq_N_MA250',
        'dominant_freq_Z_MA250', 'dominant_freq_E_MA1000',
        'dominant_freq_N_MA1000', 'dominant_freq_Z_MA1000', 'xcor_E_deep_max',
        'xcor_E_deep_mean', 'xcor_E_shallow_max', 'xcor_E_shallow_mean',
        'xcor_N_deep_max', 'xcor_N_deep_mean', 'xcor_N_shallow_max',
        'xcor_N_shallow_mean', 'xcor_Z_deep_max', 'xcor_Z_deep_mean',
        'xcor_Z_shallow_max', 'xcor_Z_shallow_mean', 'xcor_E_MA250_deep_max',
        'xcor_E_MA250_deep_mean', 'xcor_E_MA250_shallow_max',
        'xcor_E_MA250_shallow_mean', 'xcor_N_MA250_deep_max',
        'xcor_N_MA250_deep_mean', 'xcor_N_MA250_shallow_max',
        'xcor_N_MA250_shallow_mean', 'xcor_Z_MA250_deep_max',
        'xcor_Z_MA250_deep_mean', 'xcor_Z_MA250_shallow_max',
        'xcor_Z_MA250_shallow_mean', 'xcor_E_MA1000_deep_max',
        'xcor_E_MA1000_deep_mean', 'xcor_E_MA1000_shallow_max',
        'xcor_E_MA1000_shallow_mean', 'xcor_N_MA1000_deep_max',
        'xcor_N_MA1000_deep_mean', 'xcor_N_MA1000_shallow_max',
        'xcor_N_MA1000_shallow_mean', 'xcor_Z_MA1000_deep_max',
        'xcor_Z_MA1000_deep_mean', 'xcor_Z_MA1000_shallow_max',
        'xcor_Z_MA1000_shallow_mean', 'E_env_sim_deep_max',
        'E_env_sim_deep_mean', 'E_env_sim_shallow_max',
        'E_env_sim_shallow_mean', 'N_env_sim_deep_max', 'N_env_sim_deep_mean',
        'N_env_sim_shallow_max', 'N_env_sim_shallow_mean',
        'Z_env_sim_deep_max', 'Z_env_sim_deep_mean', 'Z_env_sim_shallow_max',
        'Z_env_sim_shallow_mean'
    ]]