Ejemplo n.º 1
0
def __dayplot_set_x_ticks(ax, starttime, endtime, sol=False):
    """
    Sets the xticks for the dayplot.
    """

    # day_break = endtime - float(endtime) % 86400
    # day_break -= float(day_break) % 1
    hour_ticks = []
    ticklabels = []
    interval = endtime - starttime
    interval_h = interval / 3600.
    ts = utct(starttime)
    tick_start = utct(ts.year, ts.month, ts.day, ts.hour)

    if 0 < interval <= 60:
        step = 10
    elif 60 < interval <= 300:
        step = 30
    elif 300 < interval <= 900:
        step = 120
    elif 900 < interval <= 3600:
        step = 300
    elif 3600 < interval <= 18000:
        step = 1800
    elif 18000 < interval <= 43200:
        step = 3600
    elif 43200 < interval <= 86400:
        step = 4 * 3600
    elif 86400 < interval:
        step = 12 * 3600
    step_h = step / 3600.

    # for ihour in np.arange(0, interval_h + step_h * 2, step_h):
    for ihour in np.arange(0, interval_h + 2 + step_h, step_h):
        hour_tick = tick_start + ihour * 3600.
        hour_ticks.append(hour_tick)
        if sol:
            ticklabels.append(utct(hour_tick).strftime('%H:%M:%S%nSol %j'))
        else:
            ticklabels.append(utct(hour_tick).strftime('%H:%M:%S%n%Y-%m-%d'))

    hour_ticks_minor = []
    for ihour in np.arange(0, interval_h, 1):
        hour_tick = tick_start + ihour * 3600.
        hour_ticks_minor.append(hour_tick)

    ax.set_xticks(hour_ticks)
    ax.set_xticks(hour_ticks_minor, minor=True)
    ax.set_xticklabels(ticklabels)
    ax.set_xlim(float(starttime),
                float(endtime))
Ejemplo n.º 2
0
    def __init__(
        self,
        or_time: utct = utct("2020-3-10T12:00:00"),
        lat_src: float = 10.99032013,
        lon_src: float = 170,
        lat_rec: float = 4.502384,
        lon_rec: float = 135.623447,
        depth: float = 45.0,
        name: str = "Test_Event",
    ):
        """
    Create a seismic event
    :param rec_lat: latitude receiver
    :param rec_lon: longitude receiver
    """
        self.event = Event()
        self.event.latitude = lat_src
        self.event.longitude = lon_src
        self.event.depth = depth
        self.event.name = name

        self.lat_rec = lat_rec
        self.lon_rec = lon_rec

        epi, az, baz = EventObj.Get_location(
            self.event.latitude, self.event.longitude, self.lat_rec, self.lon_rec
        )

        self.event.distance = epi
        print(self.event.distance)
        self.event.az = az
        self.event.baz = baz
        self.event.origin_time = or_time
Ejemplo n.º 3
0
 def add_picks(self, taup_model: TauPyModel, depth: float, phases: [str] = ["P", "S"]):
     self.event.picks = {}
     for phase in phases:
         self.event.picks[phase] = utct(
             self.event.origin_time
             + PhaseTracer.get_traveltime(
                 model=taup_model, phase=phase, depth=depth, distance=self.event.distance
             )
         )
Ejemplo n.º 4
0
def select_and_add(st, db_HF, db_LF, M, dist):
    winlen_hours = 4
    tstart_total = float(st[0].stats.starttime) + 3600
    tend_total = float(st[0].stats.endtime) - 3600 * (winlen_hours + 1)

    tstart_win = tstart_total + (tend_total - tstart_total) * np.random.rand(1)
    tend_win = tstart_win + 3600 * winlen_hours

    t0 = tstart_win + 600 + (tend_win - 4200 - tstart_win) * np.random.rand(1)

    st_LF = st.slice(starttime=utct(tstart_win - 1800),
                     endtime=utct(tend_win + 1800))
    st_HF = st.slice(starttime=utct(tstart_win - 1800),
                     endtime=utct(tend_win + 1800))

    st_HF.filter('highpass', freq=0.9)
    st_LF.filter('bandpass', freqmin=1./60, freqmax=1.2)

    st_LF.trim(starttime=utct(tstart_win),
               endtime=utct(tend_win))
    st_HF.trim(starttime=utct(tstart_win),
               endtime=utct(tend_win))

    src = instaseis.Source(latitude=90.0-dist,
                           longitude=0.0,
                           depth_in_m=1e3 + np.random.rand(1) * 2.9e4,
                           m_rr=instaseis.source.magnitude2moment(M)[0] *
                                np.sqrt(2.),
                           origin_time=utct(t0)
                           )
    rec = instaseis.Receiver(latitude=90.0, longitude=0.0,
                             network='XB', station='ELYSE', location='58')

    for db, flims in zip([db_HF, db_LF], [(1./10, 4.), (1./100., 1./10.)]):
        st_inst = db.get_seismograms(source=src, receiver=rec,
                                     kind='velocity',
                                     components='Z', dt=0.1)
        st_inst.trim(endtime=st_HF[0].stats.endtime-2)
        st_inst[0].stats.channel = 'BZC'
        #st_inst.filter('lowpass', freq=fmin)
        st_inst.filter('highpass', freq=flims[0])
        st_inst.filter('lowpass', freq=flims[1])
        i0 = int((st_inst[0].stats.starttime - st_LF[0].stats.starttime) * 10)
        for s in (st_LF, st_HF):
            s[0].data[i0:i0+len(st_inst[0].data)] += st_inst[0].data

    return st_LF, st_HF, t0
Ejemplo n.º 5
0
    remote_folder="/data/",
    save_file_name=pjoin(save_folder, "event.mseed"),
)
""" Specify receiver """
lat_rec = 4.5  # 02384
lon_rec = 135.623447
rec = instaseis.Receiver(latitude=lat_rec, longitude=lon_rec)

for event in events:
    st = event.waveforms_VBB.copy()
    # epi, az, baz = _PreProcess.Get_location(
    #     la_s=event.latitude, lo_s=event.longitude, la_r=rec.latitude, lo_r=rec.longitude
    # )
    # st = st.rotate("NE->RT", back_azimuth=baz)

    P_arr = utct(event.picks["P"]) - utct(event.origin_time) + P_shift
    S_arr = utct(event.picks["S"]) - utct(event.origin_time) + S_shift
    """ Plot the waveforms and spectra """
    fig, ax = plt.subplots(nrows=3,
                           ncols=2,
                           sharex="col",
                           sharey="col",
                           figsize=(15, 15))
    for i, comp in enumerate(components):
        tr = st[i].copy()
        o_time = event.origin_time - tr.stats.starttime
        """ Plot the origin time, P and S arrivals """
        ax[i, 0].axvline(x=0, c="gold", ls="dashed", label="Origin time")
        ax[i, 0].axvline(x=P_arr, c="red", ls="dashed", label="P-arrival")
        ax[i, 0].axvline(x=S_arr, c="blue", ls="dashed", label="S-arrival")
        """ Plot the original data in time-domain """
Ejemplo n.º 6
0
    print(f"{event.name}, S:")
    print(event.picks["S"])
    print(f"lat: {event.latitude}")
    print(f"lon: {event.longitude}")
    # For plot 3a:
    # fmin = 1.0 / 5.0  # 1. / 10.#1./8.
    # fmax = 1.0 / 2.5  # 1. / 2.#1./5.

    fmin = 0.2
    fmax = 0.4

    nphase = 2  # len(phases)
    arrs_real = []
    for iphase in range(0, nphase):
        arrs_real.append(
            utct(event.picks[phases[iphase]]) - event.origin_time +
            corrs[iphase])

    normfac = np.zeros(nphase)
    st_real = obspy.Stream()
    st_real_orig = obspy.Stream()
    st_sigma = obspy.Stream()

    normfac_phase = {"P": None, "S": None}
    LQT_value = False
    for iphase in range(nphase):
        # if source == 2:
        #     if iphase == 1 or iphase == 2 or iphase == 4:
        #         continue
        if components[iphase] in ["Z", "N", "E"]:
            tr_orig = event.waveforms_VBB.select(channel="BH" +
Ejemplo n.º 7
0
event_input = {event_name: []}
event = DataGetter.read_events_from_cat(
    event_params=event_input,
    cat=cat,
    inv=inv,
    local_folder="/mnt/marshost/",
    host_name="marshost.ethz.ch",
    user_name="sysop",
    remote_folder="/data/",
    save_file_name=pjoin(folder, "event.mseed"),
)[0]

obs_tt = []
for i, phase in enumerate(phases):
    obs_tt.append(
        utct(event.picks[phase]) - event.origin_time + phase_corrs[i])
st_obs_full, sigmas_noise = _PreProcess.prepare_event_data(
    event=event,
    phases=phases,
    components=components,
    slice=False,
    tts=obs_tt,
    filter=False,
    noise_level=True,
)

S = utct(event.picks["S"]) + phase_corrs[1] - utct(event.picks["P"])

st_obs_filt = obspy.Stream()
st_obs_raw = obspy.Stream()
st_obs_pre_noise = obspy.Stream()
Ejemplo n.º 8
0
 Create_Vmod.create_dat_file(
     src_depth=depth,
     focal_mech=focal_mech0,
     M0=None,
     epi_in_km=epi_in_km,
     baz=baz,
     dt=dt,
     save_path=f_start,
     bm_file_path=bm_file,
 )
 """ Create observed data array (for the moment all synthetic)"""
 event.waveforms_VBB.resample((1 / dt))
 obs_tt = []
 for i, phase in enumerate(phases):
     obs_tt.append(
         utct(event.picks[phase]) - event.origin_time + phase_corrs[i])
 st_obs_w, _ = _PreProcess.prepare_event_data(
     event=event,
     phases=phases,
     components=comps,
     slice=True,
     tts=obs_tt,
     t_pre=t_pres,
     t_post=t_posts,
     filter=True,
     fmin=fmin,
     fmax=fmax,
     zerophase=zerophase,
     noise_level=False,
 )
 st_obs_full, sigmas_noise = _PreProcess.prepare_event_data(