Ejemplo n.º 1
0
    def test_get_variable_misc(self, m):
        m.return_value = {
            "var": {
                "name": "the_name",
                "unit": "My Unit",
                "scale": [0, 10],
            },
            "var2": {
                "hide": True,
            }
        }

        self.assertEqual(
            util.get_variable_name("dataset", mock.Mock(key="var")),
            "the_name")
        variable_mock = mock.Mock()
        variable_mock.configure_mock(key="none", name="var_name")
        self.assertEqual(util.get_variable_name("dataset", variable_mock),
                         "var_name")
        variable_mock.configure_mock(key="nameless", name=None)
        self.assertEqual(util.get_variable_name("dataset", variable_mock),
                         "Nameless")

        self.assertEqual(
            util.get_variable_unit("dataset", mock.Mock(key="var")), "My Unit")
        variable_mock.configure_mock(key="none", unit="var_unit")
        self.assertEqual(util.get_variable_unit("dataset", variable_mock),
                         "var_unit")
        self.assertEqual(
            util.get_variable_unit("dataset", mock.Mock(key="varx",
                                                        unit=None)), "Unknown")

        self.assertEqual(
            util.get_variable_scale("dataset", mock.Mock(key="var")), [0, 10])
        variable_mock.configure_mock(key="none", valid_min=5, valid_max=50)
        self.assertEqual(util.get_variable_scale("dataset", variable_mock),
                         [5, 50])
        self.assertEqual(
            util.get_variable_scale(
                "dataset",
                mock.Mock(key="varx",
                          scale=None,
                          valid_min=None,
                          valid_max=None)), [0, 100])

        self.assertFalse(
            util.is_variable_hidden("dataset", mock.Mock(key="var")))
        self.assertTrue(
            util.is_variable_hidden("dataset", mock.Mock(key="var2")))
        self.assertFalse(
            util.is_variable_hidden("dataset", mock.Mock(key="var3")))
Ejemplo n.º 2
0
def get_scale(dataset, variable, depth, time, projection, extent):
    x = np.linspace(extent[0], extent[2], 50)
    y = np.linspace(extent[1], extent[3], 50)
    xx, yy = np.meshgrid(x, y)
    dest = Proj(init=projection)
    lon, lat = dest(xx, yy, inverse=True)

    variables_anom = variable.split(",")
    variables = [re.sub('_anom$', '', v) for v in variables_anom]

    with open_dataset(get_dataset_url(dataset)) as ds:
        timestamp = ds.timestamps[time]

        d = ds.get_area(
            np.array([lat, lon]),
            depth,
            time,
            variables[0]
        )
        if len(variables) > 1:
            d0 = d
            d1 = ds.get_area(
                np.array([lat, lon]),
                depth,
                time,
                variables[1]
            )
            d = np.sqrt(d0 ** 2 + d1 ** 2)

        variable_unit = get_variable_unit(dataset,
                                          ds.variables[variables[0]])
        if variable_unit.startswith("Kelvin"):
            variable_unit = "Celsius"
            d = np.add(d, -273.15)

    if variables != variables_anom:
        with open_dataset(get_dataset_climatology(dataset), 'r') as ds:
            c = ds.get_area(
                np.array([lat, lon]),
                depth,
                timestamp.month - 1,
                variables[0]
            )

            if len(variables) > 1:
                c0 = c
                c1 = ds.get_area(
                    np.array([lat, lon]),
                    depth,
                    timestamp.month - 1,
                    variables[1]
                )
                c = np.sqrt(c0 ** 2 + c1 ** 2)

            d = d - c

            m = max(abs(d.min()), abs(d.max()))
            return -m, m

    return d.min(), d.max()
Ejemplo n.º 3
0
    def get_variable_units(self, dataset, variables):
        units = []

        for idx, v in enumerate(variables):
            units.append(get_variable_unit(self.dataset_name,
                                           dataset.variables[v]))

        return units
Ejemplo n.º 4
0
    def get_variable_units(self, dataset, variables):
        units = []

        for idx, v in enumerate(variables):
            units.append(get_variable_unit(self.dataset_name,
                                           dataset.variables[v]))

        return units
Ejemplo n.º 5
0
def scale(args):
    dataset_name = args.get('dataset')
    scale = args.get('scale')
    scale = [float(component) for component in scale.split(',')]

    variable = args.get('variable')
    if variable.endswith('_anom'):
        variable = variable[0:-5]
        anom = True
    else:
        anom = False

    variable = variable.split(',')

    with open_dataset(get_dataset_url(dataset_name)) as dataset:
        variable_unit = get_variable_unit(dataset_name,
                                          dataset.variables[variable[0]])
        variable_name = get_variable_name(dataset_name,
                                          dataset.variables[variable[0]])

    if variable_unit.startswith("Kelvin"):
        variable_unit = "Celsius"

    if anom:
        cmap = colormap.colormaps['anomaly']
        variable_name = gettext("%s Anomaly") % variable_name
    else:
        cmap = colormap.find_colormap(variable_name)

    if len(variable) == 2:
        if not anom:
            cmap = colormap.colormaps.get('speed')

        variable_name = re.sub(
            r"(?i)( x | y |zonal |meridional |northward |eastward )", " ",
            variable_name)
        variable_name = re.sub(r" +", " ", variable_name)

    fig = plt.figure(figsize=(2, 5), dpi=75)
    ax = fig.add_axes([0.05, 0.05, 0.25, 0.9])
    norm = matplotlib.colors.Normalize(vmin=scale[0], vmax=scale[1])

    formatter = ScalarFormatter()
    formatter.set_powerlimits((-3, 4))
    bar = ColorbarBase(ax, cmap=cmap, norm=norm, orientation='vertical',
                       format=formatter)
    bar.set_label("%s (%s)" % (variable_name.title(),
                               utils.mathtext(variable_unit)))

    buf = StringIO()
    try:
        plt.savefig(buf, format='png', dpi='figure', transparent=False,
                    bbox_inches='tight', pad_inches=0.05)
        plt.close(fig)
        return buf.getvalue()
    finally:
        buf.close()
Ejemplo n.º 6
0
def scale(args):
    dataset_name = args.get('dataset')
    scale = args.get('scale')
    scale = [float(component) for component in scale.split(',')]

    variable = args.get('variable')
    if variable.endswith('_anom'):
        variable = variable[0:-5]
        anom = True
    else:
        anom = False

    variable = variable.split(',')

    with open_dataset(get_dataset_url(dataset_name)) as dataset:
        variable_unit = get_variable_unit(dataset_name,
                                          dataset.variables[variable[0]])
        variable_name = get_variable_name(dataset_name,
                                          dataset.variables[variable[0]])

    if variable_unit.startswith("Kelvin"):
        variable_unit = "Celsius"

    if anom:
        cmap = colormap.colormaps['anomaly']
        variable_name = gettext("%s Anomaly") % variable_name
    else:
        cmap = colormap.find_colormap(variable_name)

    if len(variable) == 2:
        if not anom:
            cmap = colormap.colormaps.get('speed')

        variable_name = re.sub(
            r"(?i)( x | y |zonal |meridional |northward |eastward )", " ",
            variable_name)
        variable_name = re.sub(r" +", " ", variable_name)

    fig = plt.figure(figsize=(2, 5), dpi=75)
    ax = fig.add_axes([0.05, 0.05, 0.25, 0.9])
    norm = matplotlib.colors.Normalize(vmin=scale[0], vmax=scale[1])

    formatter = ScalarFormatter()
    formatter.set_powerlimits((-3, 4))
    bar = ColorbarBase(ax, cmap=cmap, norm=norm, orientation='vertical',
                       format=formatter)
    bar.set_label("%s (%s)" % (variable_name.title(),
                               utils.mathtext(variable_unit)))

    buf = StringIO()
    try:
        plt.savefig(buf, format='png', dpi='figure', transparent=False,
                    bbox_inches='tight', pad_inches=0.05)
        plt.close(fig)
        return buf.getvalue()
    finally:
        buf.close()
Ejemplo n.º 7
0
def get_point_data(dataset, variable, time, depth, location):
    variables_anom = variable.split(",")
    variables = [re.sub('_anom$', '', v) for v in variables_anom]

    data = []
    names = []
    units = []
    with open_dataset(get_dataset_url(dataset)) as ds:
        timestamp = ds.timestamps[time]

        for v in variables:
            d = ds.get_point(
                location[0],
                location[1],
                depth,
                time,
                v
            )
            variable_name = get_variable_name(dataset, ds.variables[v])
            variable_unit = get_variable_unit(dataset, ds.variables[v])

            if variable_unit.startswith("Kelvin"):
                variable_unit = "Celsius"
                d = np.add(d, -273.15)

            data.append(d)
            names.append(variable_name)
            units.append(variable_unit)

    if variables != variables_anom:
        with open_dataset(get_dataset_climatology(dataset)) as ds:
            for idx, v in enumerate(variables):
                d = ds.get_point(
                    location[0],
                    location[1],
                    depth,
                    timestamp.month,
                    v
                )

                data[idx] = data[idx] - d
                names[idx] = names[idx] + " Anomaly"

    result = {
        'value': map(lambda f: '%s' % float('%.4g' % f), data),
        'location': map(lambda f: round(f, 4), location),
        'name': names,
        'units': units,
    }
    return result
Ejemplo n.º 8
0
def get_scale(dataset, variable, depth, time, projection, extent, interp,
              radius, neighbours):
    x = np.linspace(extent[0], extent[2], 50)
    y = np.linspace(extent[1], extent[3], 50)
    xx, yy = np.meshgrid(x, y)
    dest = Proj(init=projection)
    lon, lat = dest(xx, yy, inverse=True)

    variables_anom = variable.split(",")
    variables = [re.sub('_anom$', '', v) for v in variables_anom]

    with open_dataset(get_dataset_url(dataset)) as ds:
        timestamp = ds.timestamps[time]

        d = ds.get_area(np.array([lat, lon]), depth, time, variables[0],
                        interp, radius, neighbours)
        if len(variables) > 1:
            d0 = d
            d1 = ds.get_area(np.array([lat, lon]), depth, time, variables[1],
                             interp, radius, neighbours)
            d = np.sqrt(d0**2 + d1**2)

        variable_unit = get_variable_unit(dataset, ds.variables[variables[0]])
        if variable_unit.startswith("Kelvin"):
            variable_unit = "Celsius"
            d = np.add(d, -273.15)

    if variables != variables_anom:
        with open_dataset(get_dataset_climatology(dataset), 'r') as ds:
            c = ds.get_area(np.array([lat, lon]), depth, timestamp.month - 1,
                            variables[0], interp, radius, neighbours)

            if len(variables) > 1:
                c0 = c
                c1 = ds.get_area(np.array([lat,
                                           lon]), depth, timestamp.month - 1,
                                 variables[1], interp, radius, neighbours)
                c = np.sqrt(c0**2 + c1**2)

            d = d - c

            m = max(abs(d.min()), abs(d.max()))
            return -m, m

    return d.min(), d.max()
Ejemplo n.º 9
0
    def get_values(self, area_info, dataset_name, variables):
        with open_dataset(get_dataset_url(dataset_name)) as dataset:

            if self.time is None or (type(self.time) == str and
                                            len(self.time) == 0):
                time = -1
            else:
                time = int(self.time)

            if time < 0:
                time += len(dataset.timestamps)
            time = np.clip(time, 0, len(dataset.timestamps) - 1)

            depth = 0
            depthm = 0

            if self.depth:
                if self.depth == 'bottom':
                    depth = 'bottom'
                    depthm = 'Bottom'
                if len(self.depth) > 0 and \
                        self.depth != 'bottom':
                    depth = int(self.depth)

                    depth = np.clip(depth, 0, len(dataset.depths) - 1)
                    depthm = dataset.depths[depth]

            lat, lon = np.meshgrid(
                np.linspace(area_info.bounds[0], area_info.bounds[2], 50),
                area_info.spaced_points
            )

            output_fmtstr = "%6.5g"
            for v_idx, v in enumerate(variables):
                var = dataset.variables[v]

                variable_name = get_variable_name(dataset_name, var)
                variable_unit = get_variable_unit(dataset_name, var)
                scale_factor = get_variable_scale_factor(dataset_name, var)

                lat, lon, d = dataset.get_raw_point(
                    lat.ravel(),
                    lon.ravel(),
                    depth,
                    time,
                    v
                )

                if scale_factor != 1.0:
                    d = np.multiply(d, scale_factor)

                if variable_unit.startswith("Kelvin"):
                    variable_unit = "Celsius"
                    d = d - 273.15

                lon[np.where(lon > 180)] -= 360

                if len(var.dimensions) == 3:
                    variable_depth = ""
                elif depth == 'bottom':
                    variable_depth = "(@ Bottom)"
                else:
                    variable_depth = "(@%d m)" % np.round(depthm)

                points = [Point(p) for p in zip(lat.ravel(), lon.ravel())]

                for i, a in enumerate(area_info.area_query):
                    indices = np.where(
                        map(
                            lambda p, poly=area_info.area_polys[i]: poly.contains(p),
                            points
                        )
                    )

                    selection = np.ma.array(d.ravel()[indices])
                    if len(selection) > 0 and not selection.mask.all():
                        area_info.output[i]['variables'].append({
                            'name': ("%s %s" % (variable_name,
                                                variable_depth)).strip(),
                            'unit': variable_unit,
                            'min': output_fmtstr % (
                                np.ma.amin(selection).astype(float)
                            ),
                            'max': output_fmtstr % (
                                np.ma.amax(selection).astype(float)
                            ),
                            'mean': output_fmtstr % (
                                np.ma.mean(selection).astype(float)
                            ),
                            'median': output_fmtstr % (
                                np.ma.median(selection).astype(float)
                            ),
                            'stddev': output_fmtstr % (
                                np.ma.std(selection).astype(float)
                            ),
                            'num': "%d" % selection.count(),
                        })
                    else:
                        area_info.output[i]['variables'].append({
                            'name': ("%s %s" % (variable_name,
                                                variable_depth)).strip(),
                            'unit': variable_unit,
                            'min': gettext("No Data"),
                            'max': gettext("No Data"),
                            'mean': gettext("No Data"),
                            'median': gettext("No Data"),
                            'stddev': gettext("No Data"),
                            'num': "0",
                        })
                        ClientError(gettext("there are no datapoints in the area you selected. \
                                                you may have selected a area on land or you may \
                                                have an ara that is smallenough to fit between \
                                                the datapoints try selection a different area or \
                                                a larger area"))

            area_info.stats = area_info.output
            return

        raise ServerError(gettext("An Error has occurred. When opening the dataset. \
                                Please try again or try a different dataset. \
                                If you would like to report this error please \
                                contact [email protected]"))
Ejemplo n.º 10
0
def stats(dataset_name, query):
    variables = query.get('variable')
    if isinstance(variables, str) or isinstance(variables, unicode):
        variables = variables.split(',')

    variables = [re.sub('_anom$', '', v) for v in variables]

    area = query.get('area')
    names = None
    data = None

    names = []
    all_rings = []
    for idx, a in enumerate(area):
        if isinstance(a, str) or isinstance(a, unicode):
            a = a.encode("utf-8")
            sp = a.split('/', 1)
            if data is None:
                data = list_areas(sp[0])

            b = [x for x in data if x.get('key') == a]
            a = b[0]
            area[idx] = a

        rings = [LinearRing(p) for p in a['polygons']]
        if len(rings) > 1:
            u = cascaded_union(rings)
        else:
            u = rings[0]
        all_rings.append(u.envelope)
        if a.get('name'):
            names.append(a.get('name'))

    names = sorted(names)

    if len(all_rings) > 1:
        combined = cascaded_union(all_rings)
    else:
        combined = all_rings[0]

    combined = combined.envelope
    bounds = combined.bounds

    area_polys = []
    output = []
    for a in area:
        rings = [LinearRing(p) for p in a['polygons']]
        innerrings = [LinearRing(p) for p in a['innerrings']]

        polygons = []
        for r in rings:
            inners = []
            for ir in innerrings:
                if r.contains(ir):
                    inners.append(ir)

            polygons.append(Polygon(r, inners))

        area_polys.append(MultiPolygon(polygons))

        output.append({
            'name': a.get('name'),
            'variables': [],
        })

    with open_dataset(get_dataset_url(dataset_name)) as dataset:
        if query.get('time') is None or (type(query.get('time')) == str and
                                         len(query.get('time')) == 0):
            time = -1
        else:
            time = int(query.get('time'))

        if time < 0:
            time += len(dataset.timestamps)
        time = np.clip(time, 0, len(dataset.timestamps) - 1)

        depth = 0
        depthm = 0

        if query.get('depth'):
            if query.get('depth') == 'bottom':
                depth = 'bottom'
                depthm = 'Bottom'
            if len(query.get('depth')) > 0 and \
                    query.get('depth') != 'bottom':
                depth = int(query.get('depth'))

                depth = np.clip(depth, 0, len(dataset.depths) - 1)
                depthm = dataset.depths[depth]

        lat, lon = np.meshgrid(
            np.linspace(bounds[0], bounds[2], 50),
            np.linspace(bounds[1], bounds[3], 50)
        )

        output_fmtstr = "%6.5g"
        for v_idx, v in enumerate(variables):
            var = dataset.variables[v]

            variable_name = get_variable_name(dataset_name, var)
            variable_unit = get_variable_unit(dataset_name, var)
            scale_factor = get_variable_scale_factor(dataset_name, var)

            lat, lon, d = dataset.get_raw_point(
                lat.ravel(),
                lon.ravel(),
                depth,
                time,
                v
            )

            if scale_factor != 1.0:
                d = np.multiply(d, scale_factor)

            if variable_unit.startswith("Kelvin"):
                variable_unit = "Celsius"
                d = d - 273.15

            lon[np.where(lon > 180)] -= 360

            if len(var.dimensions) == 3:
                variable_depth = ""
            elif depth == 'bottom':
                variable_depth = "(@ Bottom)"
            else:
                variable_depth = "(@%d m)" % np.round(depthm)

            points = [Point(p) for p in zip(lat.ravel(), lon.ravel())]
            for i, a in enumerate(area):
                indices = np.where(
                    map(
                        lambda p, poly=area_polys[i]: poly.contains(p),
                        points
                    )
                )

                selection = np.ma.array(d.ravel()[indices])
                if len(selection) > 0 and not selection.mask.all():
                    output[i]['variables'].append({
                        'name': ("%s %s" % (variable_name,
                                            variable_depth)).strip(),
                        'unit': variable_unit,
                        'min': output_fmtstr % (
                            np.ma.amin(selection).astype(float)
                        ),
                        'max': output_fmtstr % (
                            np.ma.amax(selection).astype(float)
                        ),
                        'mean': output_fmtstr % (
                            np.ma.mean(selection).astype(float)
                        ),
                        'median': output_fmtstr % (
                            np.ma.median(selection).astype(float)
                        ),
                        'stddev': output_fmtstr % (
                            np.ma.std(selection).astype(float)
                        ),
                        'num': "%d" % selection.count(),
                    })
                else:
                    output[i]['variables'].append({
                        'name': ("%s %s" % (variable_name,
                                            variable_depth)).strip(),
                        'unit': variable_unit,
                        'min': gettext("No Data"),
                        'max': gettext("No Data"),
                        'mean': gettext("No Data"),
                        'median': gettext("No Data"),
                        'stddev': gettext("No Data"),
                        'num': "0",
                    })

    return json.dumps(sorted(output, key=itemgetter('name')))
Ejemplo n.º 11
0
    def load_data(self):
        distance = VincentyDistance()
        height = distance.measure(
            (self.bounds[0], self.centroid[1]),
            (self.bounds[2], self.centroid[1])) * 1000 * 1.25
        width = distance.measure(
            (self.centroid[0], self.bounds[1]),
            (self.centroid[0], self.bounds[3])) * 1000 * 1.25

        if self.projection == 'EPSG:32661':
            near_pole, covers_pole = self.pole_proximity(self.points[0])
            blat = min(self.bounds[0], self.bounds[2])
            blat = 5 * np.floor(blat / 5)
            if self.centroid[0] > 80 or near_pole or covers_pole:
                self.basemap = basemap.load_map(
                    'npstere', self.centroid, height, width,
                    min(self.bounds[0], self.bounds[2]))
            else:
                self.basemap = basemap.load_map('lcc', self.centroid, height,
                                                width)
        elif self.projection == 'EPSG:3031':
            near_pole, covers_pole = self.pole_proximity(self.points[0])
            blat = max(self.bounds[0], self.bounds[2])
            blat = 5 * np.ceil(blat / 5)
            if ((self.centroid[0] < -80 or self.bounds[1] < -80
                 or self.bounds[3] < -80)
                    or covers_pole):  # is centerered close to the south pole
                self.basemap = basemap.load_map('spstere', (blat, 180), height,
                                                width)
            else:
                self.basemap = basemap.load_map(
                    'lcc', self.centroid, height, width,
                    max(self.bounds[0], self.bounds[2]))
        elif abs(self.centroid[1] - self.bounds[1]) > 90:
            height_bounds = [self.bounds[0], self.bounds[2]]
            width_bounds = [self.bounds[1], self.bounds[3]]
            height_buffer = (abs(height_bounds[1] - height_bounds[0])) * 0.1
            width_buffer = (abs(width_bounds[0] - width_bounds[1])) * 0.1

            if abs(width_bounds[1] - width_bounds[0]) > 360:
                raise ClientError(
                    gettext(
                        "You have requested an area that exceads the width of the world. \
                                        Thinking big is good but plots need to be less the 360 deg wide."
                    ))

            if height_bounds[1] < 0:
                height_bounds[1] = height_bounds[1] + height_buffer
            else:
                height_bounds[1] = height_bounds[1] + height_buffer
            if height_bounds[0] < 0:
                height_bounds[0] = height_bounds[0] - height_buffer
            else:
                height_bounds[0] = height_bounds[0] - height_buffer

            new_width_bounds = []
            new_width_bounds.append(width_bounds[0] - width_buffer)

            new_width_bounds.append(width_bounds[1] + width_buffer)

            if abs(new_width_bounds[1] - new_width_bounds[0]) > 360:
                width_buffer = np.floor(
                    (360 - abs(width_bounds[1] - width_bounds[0])) / 2)
                new_width_bounds[0] = width_bounds[0] - width_buffer
                new_width_bounds[1] = width_bounds[1] + width_buffer

            if new_width_bounds[0] < -360:
                new_width_bounds[0] = -360
            if new_width_bounds[1] > 720:
                new_width_bounds[1] = 720

            self.basemap = basemap.load_map(
                'merc', self.centroid, (height_bounds[0], height_bounds[1]),
                (new_width_bounds[0], new_width_bounds[1]))
        else:
            self.basemap = basemap.load_map('lcc', self.centroid, height,
                                            width)

        if self.basemap.aspect < 1:
            gridx = 500
            gridy = int(500 * self.basemap.aspect)
        else:
            gridy = 500
            gridx = int(500 / self.basemap.aspect)

        self.longitude, self.latitude = self.basemap.makegrid(gridx, gridy)

        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            if self.time < 0:
                self.time += len(dataset.timestamps)
            self.time = np.clip(self.time, 0, len(dataset.timestamps) - 1)

            self.variable_unit = self.get_variable_units(
                dataset, self.variables)[0]
            self.variable_name = self.get_variable_names(
                dataset, self.variables)[0]
            scale_factor = self.get_variable_scale_factors(
                dataset, self.variables)[0]

            if self.cmap is None:
                if len(self.variables) == 1:
                    self.cmap = colormap.find_colormap(self.variable_name)
                else:
                    self.cmap = colormap.colormaps.get('speed')

            if len(self.variables) == 2:
                self.variable_name = self.vector_name(self.variable_name)

            if self.depth == 'bottom':
                depth_value = 'Bottom'
            else:
                self.depth = np.clip(int(self.depth), 0,
                                     len(dataset.depths) - 1)
                depth_value = dataset.depths[self.depth]

            data = []
            allvars = []
            for v in self.variables:
                var = dataset.variables[v]
                allvars.append(v)
                if self.filetype in ['csv', 'odv', 'txt']:
                    d, depth_value = dataset.get_area(np.array(
                        [self.latitude, self.longitude]),
                                                      self.depth,
                                                      self.time,
                                                      v,
                                                      self.interp,
                                                      self.radius,
                                                      self.neighbours,
                                                      return_depth=True)
                else:
                    d = dataset.get_area(
                        np.array([self.latitude,
                                  self.longitude]), self.depth, self.time, v,
                        self.interp, self.radius, self.neighbours)

                d = np.multiply(d, scale_factor)
                self.variable_unit, d = self.kelvin_to_celsius(
                    self.variable_unit, d)

                data.append(d)
                if self.filetype not in ['csv', 'odv', 'txt']:
                    if len(var.dimensions) == 3:
                        self.depth_label = ""
                    elif self.depth == 'bottom':
                        self.depth_label = " at Bottom"
                    else:
                        self.depth_label = " at " + \
                            str(int(np.round(depth_value))) + " m"

            if len(data) == 2:
                data[0] = np.sqrt(data[0]**2 + data[1]**2)

            self.data = data[0]

            quiver_data = []
            # Store the quiver data on the same grid as the main variable. This
            # will only be used for CSV export.
            quiver_data_fullgrid = []

            if self.quiver is not None and \
                self.quiver['variable'] != '' and \
                    self.quiver['variable'] != 'none':
                for v in self.quiver['variable'].split(','):
                    allvars.append(v)
                    var = dataset.variables[v]
                    quiver_unit = get_variable_unit(self.dataset_name, var)
                    quiver_name = get_variable_name(self.dataset_name, var)
                    quiver_lon, quiver_lat = self.basemap.makegrid(50, 50)
                    d = dataset.get_area(
                        np.array([quiver_lat, quiver_lon]),
                        self.depth,
                        self.time,
                        v,
                        self.interp,
                        self.radius,
                        self.neighbours,
                    )
                    quiver_data.append(d)
                    # Get the quiver data on the same grid as the main
                    # variable.
                    d = dataset.get_area(
                        np.array([self.latitude, self.longitude]),
                        self.depth,
                        self.time,
                        v,
                        self.interp,
                        self.radius,
                        self.neighbours,
                    )
                    quiver_data_fullgrid.append(d)

                self.quiver_name = self.vector_name(quiver_name)
                self.quiver_longitude = quiver_lon
                self.quiver_latitude = quiver_lat
                self.quiver_unit = quiver_unit
            self.quiver_data = quiver_data
            self.quiver_data_fullgrid = quiver_data_fullgrid

            if all(
                    map(lambda v: len(dataset.variables[v].dimensions) == 3,
                        allvars)):
                self.depth = 0

            contour_data = []
            if self.contour is not None and \
                self.contour['variable'] != '' and \
                    self.contour['variable'] != 'none':
                d = dataset.get_area(
                    np.array([self.latitude, self.longitude]),
                    self.depth,
                    self.time,
                    self.contour['variable'],
                    self.interp,
                    self.radius,
                    self.neighbours,
                )
                contour_unit = get_variable_unit(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_name = get_variable_name(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_factor = get_variable_scale_factor(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_unit, d = self.kelvin_to_celsius(contour_unit, d)
                d = np.multiply(d, contour_factor)
                contour_data.append(d)
                self.contour_unit = contour_unit
                self.contour_name = contour_name

            self.contour_data = contour_data

            self.timestamp = dataset.timestamps[self.time]

        if self.compare:
            self.variable_name += " Difference"
            with open_dataset(get_dataset_url(
                    self.compare['dataset'])) as dataset:
                data = []
                for v in self.compare['variables']:
                    var = dataset.variables[v]
                    d = dataset.get_area(
                        np.array([self.latitude, self.longitude]),
                        self.compare['depth'],
                        self.compare['time'],
                        v,
                        self.interp,
                        self.radius,
                        self.neighbours,
                    )
                    data.append(d)

                if len(data) == 2:
                    data = np.sqrt(data[0]**2 + data[1]**2)
                else:
                    data = data[0]

                u, data = self.kelvin_to_celsius(
                    dataset.variables[self.compare['variables'][0]].unit, data)

                self.data -= data

        # Load bathymetry data
        self.bathymetry = overlays.bathymetry(self.basemap,
                                              self.latitude,
                                              self.longitude,
                                              blur=2)

        if self.depth != 'bottom' and self.depth != 0:
            if len(quiver_data) > 0:
                quiver_bathymetry = overlays.bathymetry(
                    self.basemap, quiver_lat, quiver_lon)

            self.data[np.where(self.bathymetry < depth_value)] = np.ma.masked
            for d in self.quiver_data:
                d[np.where(quiver_bathymetry < depth_value)] = np.ma.masked
            for d in self.contour_data:
                d[np.where(self.bathymetry < depth_value)] = np.ma.masked
        else:
            mask = maskoceans(self.longitude, self.latitude, self.data).mask
            self.data[~mask] = np.ma.masked
            for d in self.quiver_data:
                mask = maskoceans(self.quiver_longitude, self.quiver_latitude,
                                  d).mask
                d[~mask] = np.ma.masked
            for d in contour_data:
                mask = maskoceans(self.longitude, self.latitude, d).mask
                d[~mask] = np.ma.masked

        if self.area and self.filetype in ['csv', 'odv', 'txt', 'geotiff']:
            area_polys = []
            for a in self.area:
                rings = [LinearRing(p) for p in a['polygons']]
                innerrings = [LinearRing(p) for p in a['innerrings']]

                polygons = []
                for r in rings:
                    inners = []
                    for ir in innerrings:
                        if r.contains(ir):
                            inners.append(ir)

                    polygons.append(Poly(r, inners))

                area_polys.append(MultiPolygon(polygons))

            points = [
                Point(p)
                for p in zip(self.latitude.ravel(), self.longitude.ravel())
            ]

            indicies = []
            for a in area_polys:
                indicies.append(
                    np.where(map(lambda p, poly=a: poly.contains(p),
                                 points))[0])

            indicies = np.unique(np.array(indicies).ravel())
            newmask = np.ones(self.data.shape, dtype=bool)
            newmask[np.unravel_index(indicies, newmask.shape)] = False
            self.data.mask |= newmask

        self.depth_value = depth_value
Ejemplo n.º 12
0
    def load_data(self):
        ds_url = app.config['DRIFTER_URL']
        data_names = []
        data_units = []
        with Dataset(ds_url % self.drifter, 'r') as ds:
            self.name = ds.buoyid

            self.imei = str(chartostring(ds['imei'][0]))
            self.wmo = str(chartostring(ds['wmo'][0]))

            t = netcdftime.utime(ds['data_date'].units)

            d = []
            for v in self.buoyvariables:
                d.append(ds[v][:])
                if "long_name" in ds[v].ncattrs():
                    data_names.append(ds[v].long_name)
                else:
                    data_names.append(v)

                if "units" in ds[v].ncattrs():
                    data_units.append(ds[v].units)
                else:
                    data_units.append(None)

            self.data = d

            self.times = t.num2date(ds['data_date'][:])
            self.points = np.array([
                ds['latitude'][:],
                ds['longitude'][:],
            ]).transpose()

        data_names = data_names[:len(self.buoyvariables)]
        data_units = data_units[:len(self.buoyvariables)]

        for i, t in enumerate(self.times):
            if t.tzinfo is None:
                self.times[i] = t.replace(tzinfo=pytz.UTC)

        self.data_names = data_names
        self.data_units = data_units

        if self.starttime is not None:
            d = dateutil.parser.parse(self.starttime)
            self.start = np.where(self.times >= d)[0].min()
        else:
            self.start = 0

        if self.endtime is not None:
            d = dateutil.parser.parse(self.endtime)
            self.end = np.where(self.times <= d)[0].max() + 1
        else:
            self.end = len(self.times) - 1

        if self.start < 0:
            self.start += len(self.times)
        self.start = np.clip(self.start, 0, len(self.times) - 1)
        if self.end < 0:
            self.end += len(self.times)
        self.end = np.clip(self.end, 0, len(self.times) - 1)

        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            depth = int(self.depth)

            try:
                model_start = np.where(
                    dataset.timestamps <= self.times[self.start]
                )[0][-1]
            except IndexError:
                model_start = 0

            model_start -= 1
            model_start = np.clip(model_start, 0, len(dataset.timestamps) - 1)

            try:
                model_end = np.where(
                    dataset.timestamps >= self.times[self.end]
                )[0][0]
            except IndexError:
                model_end = len(dataset.timestamps) - 1

            model_end += 1
            model_end = np.clip(
                model_end,
                model_start,
                len(dataset.timestamps) - 1
            )

            model_times = map(
                lambda t: time.mktime(t.timetuple()),
                dataset.timestamps[model_start:model_end + 1]
            )
            output_times = map(
                lambda t: time.mktime(t.timetuple()),
                self.times[self.start:self.end + 1]
            )
            d = []
            for v in self.variables:
                pts, dist, mt, md = dataset.get_path(
                    self.points[self.start:self.end + 1],
                    depth,
                    range(model_start, model_end + 1),
                    v,
                    times=output_times
                )

                f = interp1d(
                    model_times,
                    md,
                    assume_sorted=True,
                    bounds_error=False,
                )

                d.append(np.diag(f(mt)))

            model_data = np.ma.array(d)

            variable_names = []
            variable_units = []
            scale_factors = []

            for v in self.variables:
                variable_units.append(get_variable_unit(self.dataset_name,
                                                        dataset.variables[v]))
                variable_names.append(get_variable_name(self.dataset_name,
                                                        dataset.variables[v]))
                scale_factors.append(
                    get_variable_scale_factor(self.dataset_name,
                                              dataset.variables[v])
                )

            for idx, sf in enumerate(scale_factors):
                model_data[idx, :] = np.multiply(model_data[idx, :], sf)

            for idx, u in enumerate(variable_units):
                variable_units[idx], model_data[idx, :] = \
                    self.kelvin_to_celsius(u, model_data[idx, :])

            self.model_data = model_data
            self.model_times = map(datetime.datetime.utcfromtimestamp, mt)
            self.variable_names = variable_names
            self.variable_units = variable_units
Ejemplo n.º 13
0
    def load_data(self):
        ds_url = app.config['DRIFTER_URL']
        data_names = []
        data_units = []
        with Dataset(ds_url % self.drifter, 'r') as ds:
            self.name = ds.buoyid

            self.imei = str(chartostring(ds['imei'][0]))
            self.wmo = str(chartostring(ds['wmo'][0]))

            t = netcdftime.utime(ds['data_date'].units)

            d = []
            for v in self.buoyvariables:
                d.append(ds[v][:])
                if "long_name" in ds[v].ncattrs():
                    data_names.append(ds[v].long_name)
                else:
                    data_names.append(v)

                if "units" in ds[v].ncattrs():
                    data_units.append(ds[v].units)
                else:
                    data_units.append(None)

            self.data = d

            self.times = t.num2date(ds['data_date'][:])
            self.points = np.array([
                ds['latitude'][:],
                ds['longitude'][:],
            ]).transpose()

        data_names = data_names[:len(self.buoyvariables)]
        data_units = data_units[:len(self.buoyvariables)]

        for i, t in enumerate(self.times):
            if t.tzinfo is None:
                self.times[i] = t.replace(tzinfo=pytz.UTC)

        self.data_names = data_names
        self.data_units = data_units

        if self.starttime is not None:
            d = dateutil.parser.parse(self.starttime)
            self.start = np.where(self.times >= d)[0].min()
        else:
            self.start = 0

        if self.endtime is not None:
            d = dateutil.parser.parse(self.endtime)
            self.end = np.where(self.times <= d)[0].max() + 1
        else:
            self.end = len(self.times) - 1

        if self.start < 0:
            self.start += len(self.times)
        self.start = np.clip(self.start, 0, len(self.times) - 1)
        if self.end < 0:
            self.end += len(self.times)
        self.end = np.clip(self.end, 0, len(self.times) - 1)

        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            depth = int(self.depth)

            try:
                model_start = np.where(
                    dataset.timestamps <= self.times[self.start])[0][-1]
            except IndexError:
                model_start = 0

            model_start -= 1
            model_start = np.clip(model_start, 0, len(dataset.timestamps) - 1)

            try:
                model_end = np.where(
                    dataset.timestamps >= self.times[self.end])[0][0]
            except IndexError:
                model_end = len(dataset.timestamps) - 1

            model_end += 1
            model_end = np.clip(model_end, model_start,
                                len(dataset.timestamps) - 1)

            model_times = map(lambda t: time.mktime(t.timetuple()),
                              dataset.timestamps[model_start:model_end + 1])
            output_times = map(lambda t: time.mktime(t.timetuple()),
                               self.times[self.start:self.end + 1])
            d = []
            for v in self.variables:
                pts, dist, mt, md = dataset.get_path(
                    self.points[self.start:self.end + 1],
                    depth,
                    range(model_start, model_end + 1),
                    v,
                    times=output_times)

                f = interp1d(
                    model_times,
                    md,
                    assume_sorted=True,
                    bounds_error=False,
                )

                d.append(np.diag(f(mt)))

            model_data = np.ma.array(d)

            variable_names = []
            variable_units = []
            scale_factors = []

            for v in self.variables:
                variable_units.append(
                    get_variable_unit(self.dataset_name, dataset.variables[v]))
                variable_names.append(
                    get_variable_name(self.dataset_name, dataset.variables[v]))
                scale_factors.append(
                    get_variable_scale_factor(self.dataset_name,
                                              dataset.variables[v]))

            for idx, sf in enumerate(scale_factors):
                model_data[idx, :] = np.multiply(model_data[idx, :], sf)

            for idx, u in enumerate(variable_units):
                variable_units[idx], model_data[idx, :] = \
                    self.kelvin_to_celsius(u, model_data[idx, :])

            self.model_data = model_data
            self.model_times = map(datetime.datetime.utcfromtimestamp, mt)
            self.variable_names = variable_names
            self.variable_units = variable_units
Ejemplo n.º 14
0
    def load_data(self):
        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            self.load_misc(dataset, self.variables)
            self.fix_startend_times(dataset)

            self.variable_unit = get_variable_unit(
                self.dataset_name,
                dataset.variables[self.variables[0]]
            )
            self.variable_name = get_variable_name(
                self.dataset_name,
                dataset.variables[self.variables[0]]
            )

            var = self.variables[0]
            if self.depth != 'all' and self.depth != 'bottom' and \
                (set(dataset.variables[var].dimensions) &
                    set(dataset.depth_dimensions)):
                self.depth_label = " at %d m" % (
                    np.round(dataset.depths[self.depth])
                )

            elif self.depth == 'bottom':
                self.depth_label = ' at Bottom'
            else:
                self.depth_label = ''

            if not (set(dataset.variables[var].dimensions) &
                    set(dataset.depth_dimensions)):
                self.depth = 0

            times = None
            point_data = []
            for p in self.points:
                data = []
                for v in self.variables:
                    if self.depth == 'all':
                        d, dep = dataset.get_timeseries_profile(
                            float(p[0]),
                            float(p[1]),
                            self.starttime,
                            self.endtime,
                            v
                        )
                    else:
                        d, dep = dataset.get_timeseries_point(
                            float(p[0]),
                            float(p[1]),
                            self.depth,
                            self.starttime,
                            self.endtime,
                            v,
                            return_depth=True
                        )

                    data.append(d)

                point_data.append(np.ma.array(data))

            point_data = np.ma.array(point_data)
            for idx, factor in enumerate(self.scale_factors):
                if factor != 1.0:
                    point_data[idx] = np.multiply(point_data[idx], factor)

            times = dataset.timestamps[self.starttime:self.endtime + 1]
            if self.query.get('dataset_quantum') == 'month':
                times = [datetime.date(x.year, x.month, 1) for x in times]

            # depths = dataset.depths
            depths = dep

        # TODO: pint
        if self.variable_unit.startswith("Kelvin"):
            self.variable_unit = "Celsius"
            for idx, v in enumerate(self.variables):
                point_data[:, idx, :] = point_data[:, idx, :] - 273.15

        if point_data.shape[1] == 2:
            point_data = np.ma.expand_dims(
                np.sqrt(
                    point_data[:, 0, :] ** 2 + point_data[:, 1, :] ** 2
                ), 1
            )

        self.times = times
        self.data = point_data
        self.depths = depths
        self.depth_unit = "m"
Ejemplo n.º 15
0
    def load_data(self):
        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            if self.time < 0:
                self.time += len(dataset.timestamps)
            time = np.clip(self.time, 0, len(dataset.timestamps) - 1)

            for idx, v in enumerate(self.variables):
                var = dataset.variables[v]
                if not (set(var.dimensions) & set(dataset.depth_dimensions)):
                    for potential in dataset.variables:
                        if potential in self.variables:
                            continue
                        pot = dataset.variables[potential]
                        if (set(pot.dimensions) &
                                set(dataset.depth_dimensions)):
                            if len(pot.shape) > 3:
                                self.variables[idx] = potential
                                self.variables_anom[idx] = potential

            value = parallel = perpendicular = None

            variable_names = self.get_variable_names(dataset, self.variables)
            variable_units = self.get_variable_units(dataset, self.variables)
            scale_factors = self.get_variable_scale_factors(dataset,
                                                            self.variables)

            if len(self.variables) > 1:
                v = []
                for name in self.variables:
                    v.append(dataset.variables[name])

                distances, times, lat, lon, bearings = geo.path_to_points(
                    self.points, 100
                )
                transect_pts, distance, x, dep = dataset.get_path_profile(
                    self.points, time, self.variables[0], 100)
                transect_pts, distance, y, dep = dataset.get_path_profile(
                    self.points, time, self.variables[1], 100)

                x = np.multiply(x, scale_factors[0])
                y = np.multiply(y, scale_factors[1])

                r = np.radians(np.subtract(90, bearings))
                theta = np.arctan2(y, x) - r
                mag = np.sqrt(x ** 2 + y ** 2)

                parallel = mag * np.cos(theta)
                perpendicular = mag * np.sin(theta)

            else:
                transect_pts, distance, value, dep = dataset.get_path_profile(
                    self.points, time, self.variables[0])

                value = np.multiply(value, scale_factors[0])

            variable_units[0], value = self.kelvin_to_celsius(
                variable_units[0],
                value
            )

            if len(self.variables) == 2:
                variable_names[0] = self.vector_name(variable_names[0])

            if self.cmap is None:
                self.cmap = colormap.find_colormap(variable_names[0])

            self.timestamp = dataset.timestamps[int(time)]

            self.depth = dep
            self.depth_unit = "m"

            self.transect_data = {
                "points": transect_pts,
                "distance": distance,
                "data": value,
                "name": variable_names[0],
                "unit": variable_units[0],
                "parallel": parallel,
                "perpendicular": perpendicular,
            }

            if self.surface is not None:
                surface_pts, surface_dist, t, surface_value = \
                    dataset.get_path(
                        self.points,
                        0,
                        time,
                        self.surface,
                    )
                surface_unit = get_variable_unit(
                    self.dataset_name,
                    dataset.variables[self.surface]
                )
                surface_name = get_variable_name(
                    self.dataset_name,
                    dataset.variables[self.surface]
                )
                surface_factor = get_variable_scale_factor(
                    self.dataset_name,
                    dataset.variables[self.surface]
                )
                surface_value = np.multiply(surface_value, surface_factor)
                surface_unit, surface_value = self.kelvin_to_celsius(
                    surface_unit,
                    surface_value
                )

                self.surface_data = {
                    "points": surface_pts,
                    "distance": surface_dist,
                    "data": surface_value,
                    "name": surface_name,
                    "unit": surface_unit
                }

        if self.variables != self.variables_anom:
            with open_dataset(
                get_dataset_climatology(self.dataset_name)
            ) as dataset:
                if self.variables[0] in dataset.variables:
                    if len(self.variables) == 1:
                        climate_points, climate_distance, climate_data = \
                            dataset.get_path_profile(self.points,
                                                     self.timestamp.month - 1,
                                                     self.variables[0])
                        u, climate_data = self.kelvin_to_celsius(
                            dataset.variables[self.variables[0]].unit,
                            climate_data
                        )
                        self.transect_data['data'] -= - climate_data
                    else:
                        climate_pts, climate_distance, climate_x, cdep = \
                            dataset.get_path_profile(
                                self.points,
                                self.timestamp.month - 1,
                                self.variables[0],
                                100
                            )
                        climate_pts, climate_distance, climate_y, cdep = \
                            dataset.get_path_profile(
                                self.points,
                                self.timestamp.month - 1,
                                self.variables[0],
                                100
                            )

                        climate_distances, ctimes, clat, clon, bearings = \
                            geo.path_to_points(self.points, 100)

                        r = np.radians(np.subtract(90, bearings))
                        theta = np.arctan2(y, x) - r
                        mag = np.sqrt(x ** 2 + y ** 2)

                        climate_parallel = mag * np.cos(theta)
                        climate_perpendicular = mag * np.sin(theta)

                        self.transect_data['parallel'] -= climate_parallel
                        self.transect_data[
                            'perpendicular'] -= climate_perpendicular

        # Bathymetry
        with Dataset(app.config['BATHYMETRY_FILE'], 'r') as dataset:
            bath_x, bath_y = bathymetry(
                dataset.variables['y'],
                dataset.variables['x'],
                dataset.variables['z'],
                self.points)

        self.bathymetry = {
            'x': bath_x,
            'y': bath_y
        }
Ejemplo n.º 16
0
def plot(projection, x, y, z, args):
    lat, lon = get_latlon_coords(projection, x, y, z)
    if len(lat.shape) == 1:
        lat, lon = np.meshgrid(lat, lon)

    dataset_name = args.get('dataset')
    variable = args.get('variable')
    if variable.endswith('_anom'):
        variable = variable[0:-5]
        anom = True
    else:
        anom = False

    variable = variable.split(',')

    depth = args.get('depth')

    scale = args.get('scale')
    scale = [float(component) for component in scale.split(',')]

    data = []
    with open_dataset(get_dataset_url(dataset_name)) as dataset:
        if args.get('time') is None or (type(args.get('time')) == str and
                                        len(args.get('time')) == 0):
            time = -1
        else:
            time = int(args.get('time'))

        t_len = len(dataset.timestamps)
        while time >= t_len:
            time -= t_len

        while time < 0:
            time += len(dataset.timestamps)

        timestamp = dataset.timestamps[time]

        for v in variable:
            data.append(dataset.get_area(
                np.array([lat, lon]),
                depth,
                time,
                v
            ))

        variable_name = get_variable_name(dataset_name,
                                          dataset.variables[variable[0]])
        variable_unit = get_variable_unit(dataset_name,
                                          dataset.variables[variable[0]])
        scale_factor = get_variable_scale_factor(
            dataset_name,
            dataset.variables[variable[0]]
        )
        if anom:
            cmap = colormap.colormaps['anomaly']
        else:
            cmap = colormap.find_colormap(variable_name)

        if depth != 'bottom':
            depthm = dataset.depths[depth]
        else:
            depthm = 0

    if scale_factor != 1.0:
        for idx, val in enumerate(data):
            data[idx] = np.multiply(val, scale_factor)

    if variable_unit.startswith("Kelvin"):
        variable_unit = "Celsius"
        for idx, val in enumerate(data):
            data[idx] = np.add(val, -273.15)

    if len(data) == 1:
        data = data[0]

    if len(data) == 2:
        data = np.sqrt(data[0] ** 2 + data[1] ** 2)
        if not anom:
            cmap = colormap.colormaps.get('speed')

    if anom:
        with open_dataset(get_dataset_climatology(dataset_name)) as dataset:
            a = dataset.get_area(
                np.array([lat, lon]),
                depth,
                timestamp.month - 1,
                v
            )
            data = data - a

    f, fname = tempfile.mkstemp()
    os.close(f)

    data = data.transpose()
    xpx = x * 256
    ypx = y * 256

    with Dataset(ETOPO_FILE % (projection, z), 'r') as dataset:
        bathymetry = dataset["z"][ypx:(ypx + 256), xpx:(xpx + 256)]

    bathymetry = gaussian_filter(bathymetry, 0.5)

    data[np.where(bathymetry > -depthm)] = np.ma.masked

    sm = matplotlib.cm.ScalarMappable(
        matplotlib.colors.Normalize(vmin=scale[0], vmax=scale[1]), cmap=cmap)
    img = sm.to_rgba(np.squeeze(data))

    im = Image.fromarray((img * 255.0).astype(np.uint8))
    im.save(fname, format='png', optimize=True)
    with open(fname, 'r') as f:
        buf = f.read()
        os.remove(fname)

    return buf
Ejemplo n.º 17
0
    def test_get_variable_misc(self, m):
        m.return_value = {
            "var": {
                "name": "the_name",
                "unit": "My Unit",
                "scale": [0, 10],
            },
            "var2": {
                "hide": True,
            }
        }

        self.assertEqual(
            util.get_variable_name("dataset", mock.Mock(key="var")),
            "the_name"
        )
        variable_mock = mock.Mock()
        variable_mock.configure_mock(key="none", name="var_name")
        self.assertEqual(
            util.get_variable_name("dataset", variable_mock),
            "var_name"
        )
        variable_mock.configure_mock(key="nameless", name=None)
        self.assertEqual(
            util.get_variable_name("dataset", variable_mock),
            "Nameless"
        )

        self.assertEqual(
            util.get_variable_unit("dataset", mock.Mock(key="var")),
            "My Unit"
        )
        variable_mock.configure_mock(key="none", unit="var_unit")
        self.assertEqual(
            util.get_variable_unit("dataset", variable_mock),
            "var_unit"
        )
        self.assertEqual(
            util.get_variable_unit(
                "dataset", mock.Mock(key="varx", unit=None)),
            "Unknown"
        )

        self.assertEqual(
            util.get_variable_scale("dataset", mock.Mock(key="var")),
            [0, 10]
        )
        variable_mock.configure_mock(key="none", valid_min=5, valid_max=50)
        self.assertEqual(
            util.get_variable_scale(
                "dataset", variable_mock),
            [5, 50]
        )
        self.assertEqual(
            util.get_variable_scale(
                "dataset", mock.Mock(key="varx", scale=None, valid_min=None,
                                     valid_max=None)),
            [0, 100]
        )

        self.assertFalse(
            util.is_variable_hidden("dataset", mock.Mock(key="var"))
        )
        self.assertTrue(
            util.is_variable_hidden("dataset", mock.Mock(key="var2"))
        )
        self.assertFalse(
            util.is_variable_hidden("dataset", mock.Mock(key="var3"))
        )
Ejemplo n.º 18
0
    def load_data(self):
        if self.projection == 'EPSG:32661':
            blat = min(self.bounds[0], self.bounds[2])
            blat = 5 * np.floor(blat / 5)
            self.basemap = basemap.load_map('npstere', (blat, 0), None, None)
        elif self.projection == 'EPSG:3031':
            blat = max(self.bounds[0], self.bounds[2])
            blat = 5 * np.ceil(blat / 5)
            self.basemap = basemap.load_map('spstere', (blat, 180), None, None)
        else:
            distance = VincentyDistance()
            height = distance.measure(
                (self.bounds[0], self.centroid[1]),
                (self.bounds[2], self.centroid[1])
            ) * 1000 * 1.25
            width = distance.measure(
                (self.centroid[0], self.bounds[1]),
                (self.centroid[0], self.bounds[3])
            ) * 1000 * 1.25
            self.basemap = basemap.load_map(
                'lcc', self.centroid, height, width
            )

        if self.basemap.aspect < 1:
            gridx = 500
            gridy = int(500 * self.basemap.aspect)
        else:
            gridy = 500
            gridx = int(500 / self.basemap.aspect)

        self.longitude, self.latitude = self.basemap.makegrid(gridx, gridy)

        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            if self.time < 0:
                self.time += len(dataset.timestamps)
            self.time = np.clip(self.time, 0, len(dataset.timestamps) - 1)

            self.variable_unit = self.get_variable_units(
                dataset, self.variables
            )[0]
            self.variable_name = self.get_variable_names(
                dataset,
                self.variables
            )[0]
            scale_factor = self.get_variable_scale_factors(
                dataset, self.variables
            )[0]

            if self.cmap is None:
                if len(self.variables) == 1:
                    self.cmap = colormap.find_colormap(self.variable_name)
                else:
                    self.cmap = colormap.colormaps.get('speed')

            if len(self.variables) == 2:
                self.variable_name = self.vector_name(self.variable_name)

            if self.depth == 'bottom':
                depth_value = 'Bottom'
            else:
                self.depth = np.clip(
                    int(self.depth), 0, len(dataset.depths) - 1)
                depth_value = dataset.depths[self.depth]

            data = []
            allvars = []
            for v in self.variables:
                var = dataset.variables[v]
                allvars.append(v)
                if self.filetype in ['csv', 'odv', 'txt']:
                    d, depth_value = dataset.get_area(
                        np.array([self.latitude, self.longitude]),
                        self.depth,
                        self.time,
                        v,
                        return_depth=True
                    )
                else:
                    d = dataset.get_area(
                        np.array([self.latitude, self.longitude]),
                        self.depth,
                        self.time,
                        v
                    )

                d = np.multiply(d, scale_factor)
                self.variable_unit, d = self.kelvin_to_celsius(
                    self.variable_unit, d)

                data.append(d)
                if self.filetype not in ['csv', 'odv', 'txt']:
                    if len(var.dimensions) == 3:
                        self.depth_label = ""
                    elif self.depth == 'bottom':
                        self.depth_label = " at Bottom"
                    else:
                        self.depth_label = " at " + \
                            str(int(np.round(depth_value))) + " m"

            if len(data) == 2:
                data[0] = np.sqrt(data[0] ** 2 + data[1] ** 2)

            self.data = data[0]

            quiver_data = []

            if self.quiver is not None and \
                self.quiver['variable'] != '' and \
                    self.quiver['variable'] != 'none':
                for v in self.quiver['variable'].split(','):
                    allvars.append(v)
                    var = dataset.variables[v]
                    quiver_unit = get_variable_unit(self.dataset_name, var)
                    quiver_name = get_variable_name(self.dataset_name, var)
                    quiver_lon, quiver_lat = self.basemap.makegrid(50, 50)
                    d = dataset.get_area(
                        np.array([quiver_lat, quiver_lon]),
                        self.depth,
                        self.time,
                        v
                    )
                    quiver_data.append(d)

                self.quiver_name = self.vector_name(quiver_name)
                self.quiver_longitude = quiver_lon
                self.quiver_latitude = quiver_lat
                self.quiver_unit = quiver_unit
            self.quiver_data = quiver_data

            if all(map(lambda v: len(dataset.variables[v].dimensions) == 3,
                       allvars)):
                self.depth = 0

            contour_data = []
            if self.contour is not None and \
                self.contour['variable'] != '' and \
                    self.contour['variable'] != 'none':
                d = dataset.get_area(
                    np.array([self.latitude, self.longitude]),
                    self.depth,
                    self.time,
                    self.contour['variable']
                )
                contour_unit = get_variable_unit(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_name = get_variable_name(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_factor = get_variable_scale_factor(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_unit, d = self.kelvin_to_celsius(contour_unit, d)
                d = np.multiply(d, contour_factor)
                contour_data.append(d)
                self.contour_unit = contour_unit
                self.contour_name = contour_name

            self.contour_data = contour_data

            self.timestamp = dataset.timestamps[self.time]

        if self.variables != self.variables_anom:
            self.variable_name += " Anomaly"
            with open_dataset(
                get_dataset_climatology(self.dataset_name)
            ) as dataset:
                data = []
                for v in self.variables:
                    var = dataset.variables[v]
                    d = dataset.get_area(
                        np.array([self.latitude, self.longitude]),
                        self.depth,
                        self.timestamp.month - 1,
                        v
                    )
                    data.append(d)

                if len(data) == 2:
                    data = np.sqrt(data[0] ** 2 + data[1] ** 2)
                else:
                    data = data[0]

                u, data = self.kelvin_to_celsius(
                    dataset.variables[self.variables[0]].unit,
                    data)

                self.data -= data

        # Load bathymetry data
        self.bathymetry = overlays.bathymetry(
            self.basemap,
            self.latitude,
            self.longitude,
            blur=2
        )

        if self.depth != 'bottom' and self.depth != 0:
            if len(quiver_data) > 0:
                quiver_bathymetry = overlays.bathymetry(
                    self.basemap, quiver_lat, quiver_lon)

            self.data[np.where(self.bathymetry < depth_value)] = np.ma.masked
            for d in self.quiver_data:
                d[np.where(quiver_bathymetry < depth_value)] = np.ma.masked
            for d in self.contour_data:
                d[np.where(self.bathymetry < depth_value)] = np.ma.masked
        else:
            mask = maskoceans(self.longitude, self.latitude, self.data).mask
            self.data[~mask] = np.ma.masked
            for d in self.quiver_data:
                mask = maskoceans(
                    self.quiver_longitude, self.quiver_latitude, d).mask
                d[~mask] = np.ma.masked
            for d in contour_data:
                mask = maskoceans(self.longitude, self.latitude, d).mask
                d[~mask] = np.ma.masked

        if self.area and self.filetype in ['csv', 'odv', 'txt', 'geotiff']:
            area_polys = []
            for a in self.area:
                rings = [LinearRing(p) for p in a['polygons']]
                innerrings = [LinearRing(p) for p in a['innerrings']]

                polygons = []
                for r in rings:
                    inners = []
                    for ir in innerrings:
                        if r.contains(ir):
                            inners.append(ir)

                    polygons.append(Poly(r, inners))

                area_polys.append(MultiPolygon(polygons))

            points = [Point(p) for p in zip(self.latitude.ravel(),
                                            self.longitude.ravel())]

            indicies = []
            for a in area_polys:
                indicies.append(np.where(
                    map(
                        lambda p, poly=a: poly.contains(p),
                        points
                    )
                )[0])

            indicies = np.unique(np.array(indicies).ravel())
            newmask = np.ones(self.data.shape, dtype=bool)
            newmask[np.unravel_index(indicies, newmask.shape)] = False
            self.data.mask |= newmask

        self.depth_value = depth_value
Ejemplo n.º 19
0
    def load_data(self):
        if self.projection == 'EPSG:32661':
            blat = min(self.bounds[0], self.bounds[2])
            blat = 5 * np.floor(blat / 5)
            self.basemap = basemap.load_map('npstere', (blat, 0), None, None)
        elif self.projection == 'EPSG:3031':
            blat = max(self.bounds[0], self.bounds[2])
            blat = 5 * np.ceil(blat / 5)
            self.basemap = basemap.load_map('spstere', (blat, 180), None, None)
        else:
            distance = VincentyDistance()
            height = distance.measure(
                (self.bounds[0], self.centroid[1]),
                (self.bounds[2], self.centroid[1])) * 1000 * 1.25
            width = distance.measure(
                (self.centroid[0], self.bounds[1]),
                (self.centroid[0], self.bounds[3])) * 1000 * 1.25
            self.basemap = basemap.load_map('lcc', self.centroid, height,
                                            width)

        if self.basemap.aspect < 1:
            gridx = 500
            gridy = int(500 * self.basemap.aspect)
        else:
            gridy = 500
            gridx = int(500 / self.basemap.aspect)

        self.longitude, self.latitude = self.basemap.makegrid(gridx, gridy)

        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            if self.time < 0:
                self.time += len(dataset.timestamps)
            self.time = np.clip(self.time, 0, len(dataset.timestamps) - 1)

            self.variable_unit = self.get_variable_units(
                dataset, self.variables)[0]
            self.variable_name = self.get_variable_names(
                dataset, self.variables)[0]
            scale_factor = self.get_variable_scale_factors(
                dataset, self.variables)[0]

            if self.cmap is None:
                if len(self.variables) == 1:
                    self.cmap = colormap.find_colormap(self.variable_name)
                else:
                    self.cmap = colormap.colormaps.get('speed')

            if len(self.variables) == 2:
                self.variable_name = self.vector_name(self.variable_name)

            if self.depth == 'bottom':
                depth_value = 'Bottom'
            else:
                self.depth = np.clip(int(self.depth), 0,
                                     len(dataset.depths) - 1)
                depth_value = dataset.depths[self.depth]

            data = []
            allvars = []
            for v in self.variables:
                var = dataset.variables[v]
                allvars.append(v)
                if self.filetype in ['csv', 'odv', 'txt']:
                    d, depth_value = dataset.get_area(np.array(
                        [self.latitude, self.longitude]),
                                                      self.depth,
                                                      self.time,
                                                      v,
                                                      return_depth=True)
                else:
                    d = dataset.get_area(
                        np.array([self.latitude, self.longitude]), self.depth,
                        self.time, v)

                d = np.multiply(d, scale_factor)
                self.variable_unit, d = self.kelvin_to_celsius(
                    self.variable_unit, d)

                data.append(d)
                if self.filetype not in ['csv', 'odv', 'txt']:
                    if len(var.dimensions) == 3:
                        self.depth_label = ""
                    elif self.depth == 'bottom':
                        self.depth_label = " at Bottom"
                    else:
                        self.depth_label = " at " + \
                            str(int(np.round(depth_value))) + " m"

            if len(data) == 2:
                data[0] = np.sqrt(data[0]**2 + data[1]**2)

            self.data = data[0]

            quiver_data = []

            if self.quiver is not None and \
                self.quiver['variable'] != '' and \
                    self.quiver['variable'] != 'none':
                for v in self.quiver['variable'].split(','):
                    allvars.append(v)
                    var = dataset.variables[v]
                    quiver_unit = get_variable_unit(self.dataset_name, var)
                    quiver_name = get_variable_name(self.dataset_name, var)
                    quiver_lon, quiver_lat = self.basemap.makegrid(50, 50)
                    d = dataset.get_area(np.array([quiver_lat, quiver_lon]),
                                         self.depth, self.time, v)
                    quiver_data.append(d)

                self.quiver_name = self.vector_name(quiver_name)
                self.quiver_longitude = quiver_lon
                self.quiver_latitude = quiver_lat
                self.quiver_unit = quiver_unit
            self.quiver_data = quiver_data

            if all(
                    map(lambda v: len(dataset.variables[v].dimensions) == 3,
                        allvars)):
                self.depth = 0

            contour_data = []
            if self.contour is not None and \
                self.contour['variable'] != '' and \
                    self.contour['variable'] != 'none':
                d = dataset.get_area(np.array([self.latitude,
                                               self.longitude]), self.depth,
                                     self.time, self.contour['variable'])
                contour_unit = get_variable_unit(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_name = get_variable_name(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_factor = get_variable_scale_factor(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_unit, d = self.kelvin_to_celsius(contour_unit, d)
                d = np.multiply(d, contour_factor)
                contour_data.append(d)
                self.contour_unit = contour_unit
                self.contour_name = contour_name

            self.contour_data = contour_data

            self.timestamp = dataset.timestamps[self.time]

        if self.variables != self.variables_anom:
            self.variable_name += " Anomaly"
            with open_dataset(get_dataset_climatology(
                    self.dataset_name)) as dataset:
                data = []
                for v in self.variables:
                    var = dataset.variables[v]
                    d = dataset.get_area(
                        np.array([self.latitude, self.longitude]), self.depth,
                        self.timestamp.month - 1, v)
                    data.append(d)

                if len(data) == 2:
                    data = np.sqrt(data[0]**2 + data[1]**2)
                else:
                    data = data[0]

                u, data = self.kelvin_to_celsius(
                    dataset.variables[self.variables[0]].unit, data)

                self.data -= data

        # Load bathymetry data
        self.bathymetry = overlays.bathymetry(self.basemap,
                                              self.latitude,
                                              self.longitude,
                                              blur=2)

        if self.depth != 'bottom' and self.depth != 0:
            if len(quiver_data) > 0:
                quiver_bathymetry = overlays.bathymetry(
                    self.basemap, quiver_lat, quiver_lon)

            self.data[np.where(self.bathymetry < depth_value)] = np.ma.masked
            for d in self.quiver_data:
                d[np.where(quiver_bathymetry < depth_value)] = np.ma.masked
            for d in self.contour_data:
                d[np.where(self.bathymetry < depth_value)] = np.ma.masked
        else:
            mask = maskoceans(self.longitude, self.latitude, self.data).mask
            self.data[~mask] = np.ma.masked
            for d in self.quiver_data:
                mask = maskoceans(self.quiver_longitude, self.quiver_latitude,
                                  d).mask
                d[~mask] = np.ma.masked
            for d in contour_data:
                mask = maskoceans(self.longitude, self.latitude, d).mask
                d[~mask] = np.ma.masked

        if self.area and self.filetype in ['csv', 'odv', 'txt', 'geotiff']:
            area_polys = []
            for a in self.area:
                rings = [LinearRing(p) for p in a['polygons']]
                innerrings = [LinearRing(p) for p in a['innerrings']]

                polygons = []
                for r in rings:
                    inners = []
                    for ir in innerrings:
                        if r.contains(ir):
                            inners.append(ir)

                    polygons.append(Poly(r, inners))

                area_polys.append(MultiPolygon(polygons))

            points = [
                Point(p)
                for p in zip(self.latitude.ravel(), self.longitude.ravel())
            ]

            indicies = []
            for a in area_polys:
                indicies.append(
                    np.where(map(lambda p, poly=a: poly.contains(p),
                                 points))[0])

            indicies = np.unique(np.array(indicies).ravel())
            newmask = np.ones(self.data.shape, dtype=bool)
            newmask[np.unravel_index(indicies, newmask.shape)] = False
            self.data.mask |= newmask

        self.depth_value = depth_value
Ejemplo n.º 20
0
    def load_data(self):
        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            self.load_misc(dataset, self.variables)
            self.fix_startend_times(dataset)

            self.variable_unit = get_variable_unit(
                self.dataset_name, dataset.variables[self.variables[0]])
            self.variable_name = get_variable_name(
                self.dataset_name, dataset.variables[self.variables[0]])

            var = self.variables[0]
            if self.depth != 'all' and self.depth != 'bottom' and \
                (set(dataset.variables[var].dimensions) &
                    set(dataset.depth_dimensions)):
                self.depth_label = " at %d m" % (np.round(
                    dataset.depths[self.depth]))

            elif self.depth == 'bottom':
                self.depth_label = ' at Bottom'
            else:
                self.depth_label = ''

            if not (set(dataset.variables[var].dimensions)
                    & set(dataset.depth_dimensions)):
                self.depth = 0

            times = None
            point_data = []
            for p in self.points:
                data = []
                for v in self.variables:
                    if self.depth == 'all':
                        d, dep = dataset.get_timeseries_profile(
                            float(p[0]), float(p[1]), self.starttime,
                            self.endtime, v)
                    else:
                        d, dep = dataset.get_timeseries_point(
                            float(p[0]),
                            float(p[1]),
                            self.depth,
                            self.starttime,
                            self.endtime,
                            v,
                            return_depth=True)

                    data.append(d)

                point_data.append(np.ma.array(data))

            point_data = np.ma.array(point_data)
            for idx, factor in enumerate(self.scale_factors):
                if factor != 1.0:
                    point_data[idx] = np.multiply(point_data[idx], factor)

            times = dataset.timestamps[self.starttime:self.endtime + 1]
            if self.query.get('dataset_quantum') == 'month':
                times = [datetime.date(x.year, x.month, 1) for x in times]

            # depths = dataset.depths
            depths = dep

        # TODO: pint
        if self.variable_unit.startswith("Kelvin"):
            self.variable_unit = "Celsius"
            for idx, v in enumerate(self.variables):
                point_data[:, idx, :] = point_data[:, idx, :] - 273.15

        if point_data.shape[1] == 2:
            point_data = np.ma.expand_dims(
                np.sqrt(point_data[:, 0, :]**2 + point_data[:, 1, :]**2), 1)

        self.times = times
        self.data = point_data
        self.depths = depths
        self.depth_unit = "m"
Ejemplo n.º 21
0
def plot(projection, x, y, z, args):
    lat, lon = get_latlon_coords(projection, x, y, z)
    if len(lat.shape) == 1:
        lat, lon = np.meshgrid(lat, lon)

    dataset_name = args.get('dataset')
    variable = args.get('variable')
    if variable.endswith('_anom'):
        variable = variable[0:-5]
        anom = True
    else:
        anom = False

    variable = variable.split(',')

    depth = args.get('depth')

    scale = args.get('scale')
    scale = [float(component) for component in scale.split(',')]

    data = []
    with open_dataset(get_dataset_url(dataset_name)) as dataset:
        if args.get('time') is None or (type(args.get('time')) == str
                                        and len(args.get('time')) == 0):
            time = -1
        else:
            time = int(args.get('time'))

        t_len = len(dataset.timestamps)
        while time >= t_len:
            time -= t_len

        while time < 0:
            time += len(dataset.timestamps)

        timestamp = dataset.timestamps[time]

        for v in variable:
            data.append(dataset.get_area(np.array([lat, lon]), depth, time, v))

        variable_name = get_variable_name(dataset_name,
                                          dataset.variables[variable[0]])
        variable_unit = get_variable_unit(dataset_name,
                                          dataset.variables[variable[0]])
        scale_factor = get_variable_scale_factor(
            dataset_name, dataset.variables[variable[0]])
        if anom:
            cmap = colormap.colormaps['anomaly']
        else:
            cmap = colormap.find_colormap(variable_name)

        if depth != 'bottom':
            depthm = dataset.depths[depth]
        else:
            depthm = 0

    if scale_factor != 1.0:
        for idx, val in enumerate(data):
            data[idx] = np.multiply(val, scale_factor)

    if variable_unit.startswith("Kelvin"):
        variable_unit = "Celsius"
        for idx, val in enumerate(data):
            data[idx] = np.add(val, -273.15)

    if len(data) == 1:
        data = data[0]

    if len(data) == 2:
        data = np.sqrt(data[0]**2 + data[1]**2)
        if not anom:
            cmap = colormap.colormaps.get('speed')

    if anom:
        with open_dataset(get_dataset_climatology(dataset_name)) as dataset:
            a = dataset.get_area(np.array([lat, lon]), depth,
                                 timestamp.month - 1, v)
            data = data - a

    f, fname = tempfile.mkstemp()
    os.close(f)

    data = data.transpose()
    xpx = x * 256
    ypx = y * 256

    with Dataset(ETOPO_FILE % (projection, z), 'r') as dataset:
        bathymetry = dataset["z"][ypx:(ypx + 256), xpx:(xpx + 256)]

    bathymetry = gaussian_filter(bathymetry, 0.5)

    data[np.where(bathymetry > -depthm)] = np.ma.masked

    sm = matplotlib.cm.ScalarMappable(matplotlib.colors.Normalize(
        vmin=scale[0], vmax=scale[1]),
                                      cmap=cmap)
    img = sm.to_rgba(np.squeeze(data))

    im = Image.fromarray((img * 255.0).astype(np.uint8))
    im.save(fname, format='png', optimize=True)
    with open(fname, 'r') as f:
        buf = f.read()
        os.remove(fname)

    return buf
Ejemplo n.º 22
0
    def load_data(self):
        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            if self.time < 0:
                self.time += len(dataset.timestamps)
            time = np.clip(self.time, 0, len(dataset.timestamps) - 1)

            for idx, v in enumerate(self.variables):
                var = dataset.variables[v]
                if not (set(var.dimensions) & set(dataset.depth_dimensions)):
                    for potential in dataset.variables:
                        if potential in self.variables:
                            continue
                        pot = dataset.variables[potential]
                        if (set(pot.dimensions)
                                & set(dataset.depth_dimensions)):
                            if len(pot.dimensions) > 3:
                                self.variables[idx] = potential.key

            value = parallel = perpendicular = None

            variable_names = self.get_variable_names(dataset, self.variables)
            variable_units = self.get_variable_units(dataset, self.variables)
            scale_factors = self.get_variable_scale_factors(
                dataset, self.variables)

            # Load data sent from primary/Left Map
            if len(self.variables) > 1:
                # Only velocity has 2 variables
                v = []
                for name in self.variables:
                    v.append(dataset.variables[name])

                distances, times, lat, lon, bearings = geo.path_to_points(
                    self.points, 100)
                transect_pts, distance, x, dep = dataset.get_path_profile(
                    self.points, time, self.variables[0], 100)
                transect_pts, distance, y, dep = dataset.get_path_profile(
                    self.points, time, self.variables[1], 100)

                # Calculate vector components
                x = np.multiply(x, scale_factors[0])
                y = np.multiply(y, scale_factors[1])

                r = np.radians(np.subtract(90, bearings))
                theta = np.arctan2(y, x) - r
                mag = np.sqrt(x**2 + y**2)

                parallel = mag * np.cos(theta)
                perpendicular = mag * np.sin(theta)

            else:
                # Get data for one variable
                transect_pts, distance, value, dep = dataset.get_path_profile(
                    self.points, time, self.variables[0])

                value = np.multiply(value, scale_factors[0])

            # Get variable units and convert to Celsius if needed
            variable_units[0], value = self.kelvin_to_celsius(
                variable_units[0], value)

            if len(self.variables) == 2:
                variable_names[0] = self.vector_name(variable_names[0])

            # If a colourmap has not been manually specified by the
            # Navigator...
            if self.cmap is None:
                self.cmap = colormap.find_colormap(variable_names[0])

            self.timestamp = dataset.timestamps[int(time)]

            self.depth = dep
            self.depth_unit = "m"

            self.transect_data = {
                "points": transect_pts,
                "distance": distance,
                "data": value,
                "name": variable_names[0],
                "unit": variable_units[0],
                "parallel": parallel,
                "perpendicular": perpendicular,
            }

            if self.surface is not None:
                surface_pts, surface_dist, t, surface_value = \
                    dataset.get_path(
                        self.points,
                        0,
                        time,
                        self.surface,
                    )
                surface_unit = get_variable_unit(
                    self.dataset_name, dataset.variables[self.surface])
                surface_name = get_variable_name(
                    self.dataset_name, dataset.variables[self.surface])
                surface_factor = get_variable_scale_factor(
                    self.dataset_name, dataset.variables[self.surface])
                surface_value = np.multiply(surface_value, surface_factor)
                surface_unit, surface_value = self.kelvin_to_celsius(
                    surface_unit, surface_value)

                self.surface_data = {
                    "points": surface_pts,
                    "distance": surface_dist,
                    "data": surface_value,
                    "name": surface_name,
                    "unit": surface_unit
                }

        # Load data sent from Right Map (if in compare mode)
        if self.compare:

            def interpolate_depths(data, depth_in, depth_out):
                output = []
                for i in range(0, depth_in.shape[0]):
                    f = interp1d(
                        depth_in[i],
                        data[:, i],
                        bounds_error=False,
                        assume_sorted=True,
                    )
                    output.append(
                        f(depth_out[i].view(np.ma.MaskedArray).filled()))

                return np.ma.masked_invalid(output).transpose()

            with open_dataset(get_dataset_url(
                    self.compare['dataset'])) as dataset:
                # Get and format date
                self.compare['date'] = np.clip(self.compare['time'], 0,
                                               len(dataset.timestamps) - 1)
                self.compare['date'] = dataset.timestamps[int(
                    self.compare['date'])]

                # 1 variable
                if len(self.compare['variables']) == 1:

                    # Get and store the "nicely formatted" string for the variable name
                    self.compare['name'] = self.get_variable_names(
                        dataset, self.compare['variables'])[0]

                    # Find correct colourmap
                    if (self.compare['colormap'] == 'default'):
                        self.compare['colormap'] = colormap.find_colormap(
                            self.compare['name'])
                    else:
                        self.compare['colormap'] = colormap.find_colormap(
                            self.compare['colormap'])

                    climate_points, climate_distance, climate_data, cdep = \
                        dataset.get_path_profile(self.points,
                                                 self.compare['time'],
                                                 self.compare['variables'][0])

                    # Get variable units and convert to Celsius if needed
                    self.compare['unit'], climate_data = self.kelvin_to_celsius(
                        dataset.variables[self.compare['variables'][0]].unit,
                        climate_data)
                    self.__fill_invalid_shift(climate_data)

                    if (self.depth.shape != cdep.shape) or \
                       (self.depth != cdep).any():
                        # Need to interpolate the depths
                        climate_data = interpolate_depths(
                            climate_data, cdep, self.depth)

                    if self.transect_data['data'] is None:
                        self.transect_data['parallel'] -= climate_data
                        self.transect_data['perpendicular'] -= climate_data
                    else:
                        self.transect_data['compare_data'] = climate_data

                # Velocity variables
                else:
                    # Get and store the "nicely formatted" string for the variable name
                    self.compare['name'] = self.get_variable_names(
                        dataset, self.compare['variables'])[0]


                    climate_pts, climate_distance, climate_x, cdep = \
                        dataset.get_path_profile(
                            self.points,
                            self.compare['time'],
                            self.compare['variables'][0],
                            100
                        )
                    climate_pts, climate_distance, climate_y, cdep = \
                        dataset.get_path_profile(
                            self.points,
                            self.compare['time'],
                            self.compare['variables'][0],
                            100
                        )

                    climate_distances, ctimes, clat, clon, bearings = \
                        geo.path_to_points(self.points, 100)

                    r = np.radians(np.subtract(90, bearings))
                    theta = np.arctan2(climate_y, climate_x) - r
                    mag = np.sqrt(climate_x**2 + climate_y**2)

                    if np.all(self.depth != cdep):
                        theta = interpolate_depths(theta, cdep, self.depth)
                        self.__fill_invalid_shift(theta)
                        mag = interpolate_depths(mag, cdep, self.depth)
                        self.__fill_invalid_shift(mag)

                    self.compare['parallel'] = mag * np.cos(theta)
                    self.compare['perpendicular'] = mag * np.sin(theta)
                    """
                    if self.transect_data['parallel'] is None:
                        self.transect_data['data'] -= mag
                    else:
                        self.transect_data['parallel'] -= climate_parallel
                        self.transect_data['perpendicular'] -= climate_perpendicular
                    """

        # Bathymetry
        with Dataset(app.config['BATHYMETRY_FILE'], 'r') as dataset:
            bath_x, bath_y = bathymetry(dataset.variables['y'],
                                        dataset.variables['x'],
                                        dataset.variables['z'], self.points)

        self.bathymetry = {'x': bath_x, 'y': bath_y}