Ejemplo n.º 1
0
    def Plot_Button_Clicked(self):
        Parameters = oct2py.Struct()

        FilePath = self.FilePath_LineEdit.text()
        RawPath = FeatAConfig.RawDataFunctions
        Mu_Min = self.MuMin_SpinBox.value()
        Mu_Max = self.MuMax_SpinBox.value()

        Beta_Min = self.BetaMin_SpinBox.value()
        Beta_Max = self.BetaMax_SpinBox.value()

        Time_Min = self.TimeRangeStart_SpinBox.value()
        Time_Max = self.TimeRangeEnd_SpinBox.value()

        if (self.RemoveNoise_CheckBox.isChecked()):
            RemoveNoise = 'true'
        else:
            RemoveNoise = 'false'

        cmd = "DataOut = GetDataAnalysis('{0}', '{1}', {2}, {3}, {4}, {5}, {6}, {7}, {8});".format(
            FilePath, RawPath, Mu_Min, Mu_Max, Beta_Min, Beta_Max, Time_Min,
            Time_Max, RemoveNoise)
        self.octave.eval(cmd)

        self.NavigateWindow.show()
        self.ui_navigate.plot()
Ejemplo n.º 2
0
    def detect(self, TrialData):
        DetectIn = oct2py.Struct()
        DetectIn['TrialData'] = TrialData
        DetectIn['TrainOut'] = self.TrainOut

        self.DetectThread.startDetect(DetectIn)
Ejemplo n.º 3
0
 def Struct(self):
     return oct2py.Struct()
Ejemplo n.º 4
0
 def struct(self, dict):
     return oct2py.Struct(dict)
Ejemplo n.º 5
0
    def run(self):
        #"../Osama Mohamed.csv",1,1,0,0,0,0,0,0,1,0,0,0,4

        #TrainOut = KNN_Generic(directory, noiseFlag, f1FLag,f2FLag,f3FLag,f4FLag,f5FLag,f6FLag,LDAFLag,PCAFlag,CSP_LDAFlag,NoneFlag,startD,endD)

        #TODO: change f*FLag to f*Flag!
        #settig the feature selection method flags
        if (self.selectedFeatureExtractionMethod == "mean"):
            self.f1FLag = 1
        else:
            self.f1FLag = 0
        if (self.selectedFeatureExtractionMethod == "Min MU and Max Beta"):
            self.f3FLag = 1
        else:
            self.f3FLag = 0
        if (self.selectedFeatureExtractionMethod ==
                "Min Mu, Max Beta, Mean Mu, Mean Beta"):
            self.f4FLag = 1
        else:
            self.f4FLag = 0
        if (self.selectedFeatureExtractionMethod ==
                "Min Mu Max Mu Min Beta Max Beta"):
            self.f5FLag = 1
        else:
            self.f5FLag = 0
        if (self.selectedFeatureExtractionMethod ==
                "Min Mu, max Mu, Min Beta, Max Beta, Mean Mu, Mean Beta"):
            self.f6FLag = 1
        else:
            self.f6FLag = 0

        #preprocessing is not done yet
        self.idealFlag = 0
        self.butterFlag = 0
        self.NoneFilterFlag = 0
        if (self.selectedPreprocessingMethod == "ideal"):
            self.idealFlag = 1
            print("Ideal")
        elif (self.selectedPreprocessingMethod == "butter"):
            self.butterFlag = 1
            print("BUTTER")
        elif (self.selectedPreprocessingMethod == "None"):
            self.NoneFilterFlag = 1
            print("None")
        else:
            print "undetermined pre-processing type"

        #setting the feature enhancement flags
        if (self.FeatureEnhancementSelectedMethod == "PCA"):
            self.PCAFlag = 1
        else:
            self.PCAFlag = 0
        if (self.FeatureEnhancementSelectedMethod == "LDA"):
            self.LDAFlag = 1
        else:
            self.LDAFlag = 0
        if (self.FeatureEnhancementSelectedMethod == "None"):
            self.NoneFlag = 1
        else:
            self.NoneFlag = 0

        #unused flags for now
        self.CSP_LDAFlag = 0
        self.f2FLag = 0

        #define the output structures
        self.knnTrainOut = oct2py.Struct()
        self.fisherTrainOut = oct2py.Struct()
        self.leastSquaresTrainOut = oct2py.Struct()
        self.likelihoodTrainOut = oct2py.Struct()
        self.likelihoodClass = oct2py.Struct()

        self.knnResult = oct2py.Struct()
        self.knnResultInput = oct2py.Struct()

        self.fisherResult = oct2py.Struct()
        self.fisherResultInput = oct2py.Struct()

        self.likelihoodResult = oct2py.Struct()
        self.likelihoodResultInput = oct2py.Struct()

        self.leastSquaresResult = oct2py.Struct()
        self.leastSquaresResultInput = oct2py.Struct()

        #calling the classifer selected according
        #if (self.trainTestFlag == True):

        if (self.classifierFile == "KNN"):
            self.knnTrainOut = self.octave.feval(
                'KNN_Generic.m', self.dataFile, self.removeNoiseFlag,
                self.idealFlag, self.butterFlag, self.NoneFilterFlag,
                self.f1FLag, self.f2FLag, self.f3FLag, self.f4FLag,
                self.f5FLag, self.f6FLag, self.LDAFlag, self.PCAFlag,
                self.CSP_LDAFlag, self.NoneFlag, self.SignalStart,
                self.SignalEnd)
            self.LDAData = self.knnTrainOut.LDAData
            self.PCAData = self.knnTrainOut.PCAData
            self.NoneData = self.knnTrainOut.NoneData
            self.dataLength = self.knnTrainOut.datalength
            print("KNN training done!")

            ###>--- using either of them is ok for debugging ---<###
            #print(self.knnTrainOut.KPCA)
            #print(self.knnTrainOut['KPCA'])

        elif (self.classifierFile == "Fisher"):
            print(self.idealFlag)
            print(self.butterFlag)
            self.fisherTrainOut = self.octave.feval(
                'Fisher_Generic.m', self.dataFile, self.removeNoiseFlag,
                self.idealFlag, self.butterFlag, self.NoneFilterFlag,
                self.f1FLag, self.f2FLag, self.f3FLag, self.f4FLag,
                self.f5FLag, self.f6FLag, self.LDAFlag, self.PCAFlag,
                self.CSP_LDAFlag, self.NoneFlag, self.SignalStart,
                self.SignalEnd)
            self.LDAData = self.fisherTrainOut.LDAData
            self.PCAData = self.fisherTrainOut.PCAData
            self.NoneData = self.fisherTrainOut.NoneData
            self.dataLength = self.fisherTrainOut.datalength
            print("Fisher training done!")

        elif (self.classifierFile == "Likelihood"):
            self.likelihoodTrainOut = self.octave.feval(
                'Likelihood_Generic.m', self.dataFile, self.removeNoiseFlag,
                self.idealFlag, self.butterFlag, self.NoneFilterFlag,
                self.f1FLag, self.f2FLag, self.f3FLag, self.f4FLag,
                self.f5FLag, self.f6FLag, self.LDAFlag, self.PCAFlag,
                self.CSP_LDAFlag, self.NoneFlag, self.SignalStart,
                self.SignalEnd)
            self.LDAData = self.likelihoodTrainOut.LDAData
            self.PCAData = self.likelihoodTrainOut.PCAData
            self.NoneData = self.likelihoodTrainOut.NoneData
            self.dataLength = self.likelihoodTrainOut.datalength

            print("Likelihood training done!")

        elif (self.classifierFile == "Least Squares"):
            self.leastSquaresTrainOut = self.octave.feval(
                'Leastsquares_Generic.m', self.dataFile, self.removeNoiseFlag,
                self.idealFlag, self.butterFlag, self.NoneFilterFlag,
                self.f1FLag, self.f2FLag, self.f3FLag, self.f4FLag,
                self.f5FLag, self.f6FLag, self.LDAFlag, self.PCAFlag,
                self.CSP_LDAFlag, self.NoneFlag, self.SignalStart,
                self.SignalEnd)
            self.LDAData = self.leastSquaresTrainOut.LDAData
            self.PCAData = self.leastSquaresTrainOut.PCAData
            self.NoneData = self.leastSquaresTrainOut.NoneData
            self.dataLength = self.leastSquaresTrainOut.datalength
            print("Least Square training done!")

        if (self.trainTestFlag == False):
            if (self.detectFile != None):
                self.detectData()
            else:
                print "Detection failed cause of a missing detection file!"
Ejemplo n.º 6
0
    def run(self): 
        octave = oct2py.Oct2Py()
        octave.addpath('octave2')
	#"../Osama Mohamed.csv",1,1,0,0,0,0,0,0,1,0,0,0,4
	
	
	#TrainOut = KNN_Generic(directory, noiseFlag, f1FLag,f2FLag,f3FLag,f4FLag,f5FLag,f6FLag,LDAFLag,PCAFlag,CSP_LDAFlag,CSPFlag,startD,endD)

	#settig the feature selection method flags
	if(self.selectedFeatureExtractionMethod =="mean"):
	    self.f1FLag = 1
	else:
	    self.f1FLag = 0
	if(self.selectedFeatureExtractionMethod =="Min MU and Max Beta"):
	    self.f3FLag = 1
	else:
	    self.f3FLag = 0
	if(self.selectedFeatureExtractionMethod =="Min Mu, Max Beta, Mean Mu, Mean Beta"):
	    self.f4FLag = 1
	else:
	    self.f4FLag = 0
	if(self.selectedFeatureExtractionMethod =="Min Mu Max Mu Min Beta Max Beta"):
	    self.f5FLag = 1
	else:
	    self.f5FLag = 0
	if(self.selectedFeatureExtractionMethod =="Min Mu, max Mu, Min Beta, Max Beta, Mean Mu, Mean Beta"):
	    self.f6FLag = 1
	else:
	    self.f6FLag = 0
	
	#preprocessing is not done yet    
	if(self.selectedPreprocessingMethod == ""):
	    pass

	#setting the feature enhancement flags 
	if(self.FeatureEnhancementSelectedMethod == "PCA"):
	    self.PCAFlag = 1
	else:
	    self.PCAFlag = 0
	if(self.FeatureEnhancementSelectedMethod == "LDA"):
	    self.LDAFlag = 1
	else:
	    self.LDAFlag = 0
	if(self.FeatureEnhancementSelectedMethod == "CSP"):
	    self.CSPFlag = 1
	else:
	    self.CSPFlag = 0
	    
	#unused flags for now
	self.CSP_LDAFlag =0
	self.f2FLag =0
	
	#define the output structures
	self.knnTrainOut = oct2py.Struct()
	self.fisherTrainOut = oct2py.Struct()
	self.leastSquaresTrainOut = oct2py.Struct()
	self.likelihoodTrainOut = oct2py.Struct()
	
	#calling the classifer selected according     
        if(self.classifierFile == "KNN"):
	    self.knnTrainOut = octave.call('KNN_Generic.m', self.dataFile, self.removeNoiseFlag, self.f1FLag,self.f2FLag,self.f3FLag,self.f4FLag,self.f5FLag,self.f6FLag,self.LDAFlag,self.PCAFlag,self.CSP_LDAFlag,self.CSPFlag,self.SignalStart,self.SignalEnd)
	    print("KNN training done!")
	    
	    ###>--- using either of them is ok for debugging ---<###
	    #print(self.knnTrainOut.KPCA)
	    #print(self.knnTrainOut['KPCA'])

	elif (self.classifierFile == "Fisher"):
	    self.fisherTrainOut = octave.call('Fisher_Generic.m', self.dataFile, self.removeNoiseFlag, self.f1FLag,self.f2FLag,self.f3FLag,self.f4FLag,self.f5FLag,self.f6FLag,self.LDAFlag,self.PCAFlag,self.CSP_LDAFlag,self.CSPFlag,self.SignalStart,self.SignalEnd)
	    print("Fisher training done!")

	elif(self.classifierFile == "Likelihood"):
	    self.likelihoodTrainOut = octave.call('Likelihood_Generic.m', self.dataFile, self.removeNoiseFlag, self.f1FLag,self.f2FLag,self.f3FLag,self.f4FLag,self.f5FLag,self.f6FLag,self.LDAFlag,self.PCAFlag,self.CSP_LDAFlag,self.CSPFlag,self.SignalStart,self.SignalEnd)
	    print("Likelihood training done!")

	elif(self.classifierFile == "Least Squares"):
	    self.leastSquaresTrainOut = octave.call('Leastsquares_Generic.m', self.dataFile, self.removeNoiseFlag, self.f1FLag,self.f2FLag,self.f3FLag,self.f4FLag,self.f5FLag,self.f6FLag,self.LDAFlag,self.PCAFlag,self.CSP_LDAFlag,self.CSPFlag,self.SignalStart,self.SignalEnd)
	    print("Least Square training done!")
Ejemplo n.º 7
0
                               "double_compress_params_octave.sav",verbose=False)
    params=loadout.pdc
    Nlinmax=Nlinac

else:#curently not working set readfile to True

    Nlinmax=10
    gun=linac.Gun_Param()
    linp_arr=linac.Linac_Param_Array(Nlinmax)

    for l in range(Nlinmax):
        lin=linac.Linac_Param()
        print 'here'
        linp_arr[l]=lin

    params=oct2py.Struct()
    params.Ev=[None]
    params.lamv=[None]
    params.Lv=[None]
    params.av=[None]
    params.R56v=[None]
    params.T566v=[None]
    params.phiv=[None]
    params.s0v=[None]

    params.Ev[0]=Nlinmax*[None]
    params.lamv[0]=Nlinmax*[None]
    params.Lv[0]=Nlinmax*[None]
    params.av[0]=Nlinmax*[None]
    params.R56v[0]=Nlinmax*[None]
    params.T566v[0]=Nlinmax*[None]