get_vad=2, get_qspec=True, pitch_threshold=0.8, cqt_bins=96, vad_smooth=3, vad_minlen=0.1, pca=True, pca_whiten=False, center=True, save_stats=True, substitute_nan=None, dtype='float16', datatype='memmap', ncache=0.12, ncpu=8) with utils.UnitTimer(): feat.run() shutil.copy(os.path.join(datapath, 'README.md'), os.path.join(output_path, 'README.md')) # ====== check the preprocessed dataset ====== # ds = F.Dataset(output_path, read_only=True) print('Output path:', output_path) print(ds) for n in ds.keys(): if '_pca' in n: pca = ds[n] if pca.components_ is None: print(n, 'components is None !') elif np.any(np.isnan(pca.components_)): print(n, 'contains NaN !')
import numba as nb from odin import utils X = np.random.rand(50000, 123) def normal(x): idx = list(range(0, x.shape[0], 5)) _ = [x[i:i + 21].ravel() for i in idx if (i + 21) <= x.shape[0]] x = np.asarray(_) if len(_) > 1 else _[0] # np.random.shuffle(x) return x with utils.UnitTimer(12): for i in range(12): x1 = normal(X) print(x1.shape) tmp = np.ones((20000, 2583)) @nb.jit('f8[:,:](f8[:,:], f8[:,:])', locals={}, nopython=True, nogil=True, cache=True) def fast(x, tmp): idx = list(range(0, x.shape[0], 5)) count = 0