Ejemplo n.º 1
0
                   PATH_ACOUSTIC_FEAT, PATH_EXP)
# ===========================================================================
# Config
# ===========================================================================
stdio(os.path.join(PATH_EXP, 'features_extraction.log'))
args = args_parse(descriptions=[
    ('recipe', 'the name of function defined in feature_recipes.py', None),
    ('--debug', 'enable debug or not', None, False)
])
DEBUG = args.debug
# ===========================================================================
# Create the recipes
# ===========================================================================
extractor = get_module_from_path(identifier=str(args.recipe),
                                 prefix='feature_recipes',
                                 path=get_script_path())
assert len(extractor) > 0, \
"Cannot find any recipe with name: '%s' from path: '%s'" % (args.recipe, get_script_path())
recipe = extractor[0](DEBUG)
# ====== debugging ====== #
if DEBUG:
  with np.warnings.catch_warnings():
    np.warnings.filterwarnings('ignore')
    for path, name in SAMPLED_WAV_FILE:
      feat = recipe.transform(path)
      assert feat['bnf'].shape[0] == feat['mspec'].shape[0]
      V.plot_multiple_features(feat, title=feat['name'])
    V.plot_save(os.path.join(PATH_EXP, 'features_%s.pdf' % args.recipe))
    exit()
# ===========================================================================
# Prepare the processor
Ejemplo n.º 2
0
from utils import (WAV_FILES, SAMPLED_WAV_FILE, PATH_ACOUSTIC_FEAT, PATH_EXP)
# ===========================================================================
# Config
# ===========================================================================
stdio(os.path.join(PATH_EXP, 'features_extraction.log'))
args = args_parse(
    descriptions=[('recipe',
                   'the name of function defined in feature_recipes.py',
                   None), ('--debug', 'enable debug or not', None, False)])
DEBUG = args.debug
# ===========================================================================
# Create the recipes
# ===========================================================================
extractor = get_module_from_path(identifier=str(args.recipe),
                                 prefix='feature_recipes',
                                 path=get_script_path())
assert len(extractor) > 0, \
"Cannot find any recipe with name: '%s' from path: '%s'" % (args.recipe, get_script_path())
recipe = extractor[0](DEBUG)
# ====== debugging ====== #
if DEBUG:
    with np.warnings.catch_warnings():
        np.warnings.filterwarnings('ignore')
        for path, name in SAMPLED_WAV_FILE:
            feat = recipe.transform(path)
            assert feat['bnf'].shape[0] == feat['mspec'].shape[0]
            V.plot_multiple_features(feat, title=feat['name'])
        V.plot_save(os.path.join(PATH_EXP, 'features_%s.pdf' % args.recipe))
        exit()
# ===========================================================================
# Prepare the processor
                        catch_warnings_ignore)
from odin import fuel as F, preprocessing as pp
from odin.stats import sampling_iter

from helpers import (PATH_ACOUSTIC_FEATURES, EXP_DIR, ALL_FILES, IS_DEBUGGING,
                     FEATURE_RECIPE, FEATURE_NAME, ALL_DATASET, Config, NCPU,
                     validate_features_dataset)
# ALL_FILES
# Header:
#  0       1      2      3       4          5         6
# path, channel, name, spkid, dataset, start_time, end_time
# ===========================================================================
# Extractor
# ===========================================================================
recipe = get_module_from_path(identifier=FEATURE_RECIPE,
                              path=get_script_path(),
                              prefix='feature_recipes')
if len(recipe) == 0:
    raise ValueError("Cannot find feature recipe with name: '%s'" %
                     FEATURE_RECIPE)
recipe = recipe[0]()
# ===========================================================================
# Debug mode
# ===========================================================================
if IS_DEBUGGING:
    with np.warnings.catch_warnings():
        rand = np.random.RandomState(seed=Config.SUPER_SEED)
        np.warnings.filterwarnings('ignore')
        # ====== stratify sampling from each dataset ====== #
        clusters = defaultdict(list)
        clusters_count = defaultdict(int)
Ejemplo n.º 4
0
# ====== check the running script to determine the current running states ====== #
_script_name = get_script_name()
if _script_name in ('speech_augmentation', 'speech_features_extraction'):
    CURRENT_STATE = SystemStates.EXTRACT_FEATURES
    _check_feature_extraction_requirement()
    _check_recipe_name_for_extraction()
elif _script_name in ('train_xvec', 'train_ivec', 'train_tvec', 'train_evec',
                      'analyze', 'analyze_data'):
    CURRENT_STATE = SystemStates.TRAINING
elif _script_name in ('make_score'):
    CURRENT_STATE = SystemStates.SCORING
    _check_feature_extraction_requirement()
else:
    raise RuntimeError("Unknown states for current running script: %s/%s" %
                       (get_script_path(), get_script_name()))
# some fancy log of current state
print(ctext('====================================', 'red'))
print(ctext("System state:", 'cyan'), ctext(CURRENT_STATE, 'yellow'))
print(ctext('====================================', 'red'))
# ===========================================================================
# FILE LIST PATH
# ===========================================================================
# ====== basic directories ====== #
EXP_DIR = get_exppath('sre', override=False)
# this folder store extracted vectors for training backend and extracting scores
VECTORS_DIR = os.path.join(EXP_DIR, 'vectors')
if not os.path.exists(VECTORS_DIR):
    os.mkdir(VECTORS_DIR)
# this folder store the results
RESULT_DIR = os.path.join(EXP_DIR, 'results')
Ejemplo n.º 5
0
                           DATA_DIR)
else:
    DATA_DIR = select_path(os.path.join(DEFAULT_BASE_DIR, 'bio_data'),
                           create_new=True)

DOWNLOAD_DIR = select_path(os.path.join(DATA_DIR, 'downloads'),
                           create_new=True)

# PATH for saving experiments results
if 'SISUA_EXP' in os.environ:
    EXP_DIR = os.environ['SISUA_EXP']
    if not os.path.exists(EXP_DIR):
        os.mkdir(EXP_DIR)
    elif os.path.isfile(EXP_DIR):
        raise RuntimeError("Experiment path at '%s' must be a folder" %
                           EXP_DIR)
else:
    EXP_DIR = select_path(os.path.join(DEFAULT_BASE_DIR, 'bio_exp'),
                          create_new=True)

# ====== path for yaml configurations ====== #
if 'SISUA_CFG' in os.environ:
    CONFIG_PATH = os.path.abspath(os.environ['SISUA_CFG'])
else:
    CONFIG_PATH = os.path.abspath(
        os.path.join(get_script_path(__name__, return_dir=True), '..', '..',
                     'configs', 'base.yaml'))
if not os.path.isfile(CONFIG_PATH):
    raise RuntimeError("Cannot find configuration .yaml files at: %s" %
                       CONFIG_PATH)
Ejemplo n.º 6
0
from odin import fuel as F, preprocessing as pp
from odin.stats import sampling_iter

from helpers import (PATH_ACOUSTIC_FEATURES, EXP_DIR,
                     ALL_FILES, IS_DEBUGGING, FEATURE_RECIPE, FEATURE_NAME,
                     ALL_DATASET, Config, NCPU,
                     validate_features_dataset)
# ALL_FILES
# Header:
#  0       1      2      3       4          5         6
# path, channel, name, spkid, dataset, start_time, end_time
# ===========================================================================
# Extractor
# ===========================================================================
recipe = get_module_from_path(identifier=FEATURE_RECIPE,
                              path=get_script_path(),
                              prefix='feature_recipes')
if len(recipe) == 0:
  raise ValueError("Cannot find feature recipe with name: '%s'" % FEATURE_RECIPE)
recipe = recipe[0]()
# ===========================================================================
# Debug mode
# ===========================================================================
if IS_DEBUGGING:
  with np.warnings.catch_warnings():
    rand = np.random.RandomState(seed=Config.SUPER_SEED)
    np.warnings.filterwarnings('ignore')
    # ====== stratify sampling from each dataset ====== #
    clusters = defaultdict(list)
    clusters_count = defaultdict(int)
    samples = []
Ejemplo n.º 7
0
    raise ValueError("'_' can appear in recipe name which is: '%s'" % FEATURE_RECIPE)
# ====== check the running script to determine the current running states ====== #
_script_name = get_script_name()
if _script_name in ('speech_augmentation', 'speech_features_extraction'):
  CURRENT_STATE = SystemStates.EXTRACT_FEATURES
  _check_feature_extraction_requirement()
  _check_recipe_name_for_extraction()
elif _script_name in ('train_xvec', 'train_ivec', 'train_tvec',
                      'train_evec', 'analyze', 'analyze_data'):
  CURRENT_STATE = SystemStates.TRAINING
elif _script_name in ('make_score'):
  CURRENT_STATE = SystemStates.SCORING
  _check_feature_extraction_requirement()
else:
  raise RuntimeError("Unknown states for current running script: %s/%s" %
    (get_script_path(), get_script_name()))
# some fancy log of current state
print(ctext('====================================', 'red'))
print(ctext("System state:", 'cyan'), ctext(CURRENT_STATE, 'yellow'))
print(ctext('====================================', 'red'))
# ===========================================================================
# FILE LIST PATH
# ===========================================================================
# ====== basic directories ====== #
EXP_DIR = get_exppath('sre', override=False)
# this folder store extracted vectors for training backend and extracting scores
VECTORS_DIR = os.path.join(EXP_DIR, 'vectors')
if not os.path.exists(VECTORS_DIR):
  os.mkdir(VECTORS_DIR)
# this folder store the results
RESULT_DIR = os.path.join(EXP_DIR, 'results')