Ejemplo n.º 1
0
def test_mean_value_difference_range_value(space):
    I0 = odl.util.testutils.noise_element(space)
    I1 = odl.util.testutils.noise_element(space)
    max0 = np.max(I0)
    max1 = np.max(I1)
    min0 = np.min(I0)
    min1 = np.min(I1)

    assert fom.mean_value_difference(I0, I1) <= max(max0 - min1, max1 - min0)
    assert fom.mean_value_difference(I0, I0) == pytest.approx(0)
    assert fom.mean_value_difference(10 * I0, I0, normalized=True) <= 1.0
Ejemplo n.º 2
0
def test_mean_value_difference_sign():
    space = odl.uniform_discr(0, 1, 10)
    I0 = space.one()
    assert np.abs(fom.mean_value_difference(I0, -I0)) == pytest.approx(2.0)
Ejemplo n.º 3
0
haarpsi = []

# Create mask for ROI to evaluate blurring and false structures. Arbitrarily
# chosen as bone in Shepp-Logan phantom.
mask = (np.asarray(phantom) == 1)

for stddev in np.linspace(0.1, 10, 100):
    phantom_noisy = phantom + odl.phantom.white_noise(reco_space,
                                                      stddev=stddev)
    mse.append(fom.mean_squared_error(phantom_noisy, phantom, normalized=True))

    mae.append(fom.mean_absolute_error(phantom_noisy, phantom,
                                       normalized=True))

    mvd.append(
        fom.mean_value_difference(phantom_noisy, phantom, normalized=True))

    std_diff.append(
        fom.standard_deviation_difference(phantom_noisy,
                                          phantom,
                                          normalized=True))

    range_diff.append(
        fom.range_difference(phantom_noisy, phantom, normalized=True))

    blur.append(
        fom.blurring(phantom_noisy,
                     phantom,
                     mask,
                     normalized=True,
                     smoothness_factor=30))