Ejemplo n.º 1
0
def test_sino_rytov():
    myframe = sys._getframe()
    sino = get_test_data_set_sino(rytov=True)
    ryt = odtbrain.sinogram_as_rytov(sino)
    twopi = 2*np.pi
    if WRITE_RES:
        write_results(myframe, ryt)
    # When moving from unwrap to skimage, there was an offset introduced.
    # Since this particular array is not flat at the borders, there is no
    # correct way here. We just subtract 2PI.
    # 2019-04-18: It turns out that on Windows, this is not the case.
    # Hence, we only subtract 2PI if the minimum of the array is above
    # 2PI..
    if ryt.imag.min() > twopi:
        ryt.imag -= twopi
    assert np.allclose(np.array(ryt).flatten().view(
        float), get_results(myframe))
    # Check the 3D result with the 2D result. They should be the same except
    # for a multiple of 2PI offset, because odtbrain._align_unwrapped
    # subtracts the background such that the median phase change is closest
    # to zero.
    # 2D A
    ryt2d = odtbrain.sinogram_as_rytov(sino[:, :, 0])
    assert np.allclose(0, negative_modulo_rest_imag(
        ryt2d - ryt[:, :, 0], twopi).view(float), atol=1e-6)
    # 2D B
    ryt2d2 = odtbrain.sinogram_as_rytov(sino[:, 0, :])
    assert np.allclose(0, negative_modulo_rest_imag(
        ryt2d2 - ryt[:, 0, :], twopi).view(float), atol=1e-6)
Ejemplo n.º 2
0
def test_correct_reproduce():
    myframe = sys._getframe()
    sino, angles = create_test_sino_3d(Nx=10, Ny=10)
    p = get_test_parameter_set(1)[0]
    sryt = odtbrain.sinogram_as_rytov(uSin=sino, u0=1, align=False)
    f = odtbrain.backpropagate_3d(sryt,
                                  angles,
                                  padval=0,
                                  dtype=np.float64,
                                  copy=False,
                                  **p)
    fc = odtbrain.apple.correct(f=f,
                                res=p["res"],
                                nm=p["nm"],
                                enforce_envelope=.95,
                                max_iter=100,
                                min_diff=0.01)
    fo = cutout(fc)
    fo = np.array(fo, dtype=np.complex128)

    if WRITE_RES:
        write_results(myframe, fo)

    data = fo.flatten().view(float)
    assert np.allclose(data, get_results(myframe))
Ejemplo n.º 3
0

sino, angles, phantom, cfg = \
    load_data("fdtd_3d_sino_A180_R6.500.tar.lzma")

A = angles.shape[0]

print("Example: Backpropagation from 3D FDTD simulations")
print("Refractive index of medium:", cfg["nm"])
print("Measurement position from object center:", cfg["lD"])
print("Wavelength sampling:", cfg["res"])
print("Number of projections:", A)
print("Performing backpropagation.")

# Apply the Rytov approximation
sinoRytov = odt.sinogram_as_rytov(sino)

# perform backpropagation to obtain object function f
f = odt.backpropagate_3d(uSin=sinoRytov,
                         angles=angles,
                         res=cfg["res"],
                         nm=cfg["nm"],
                         lD=cfg["lD"]
                         )

# compute refractive index n from object function
n = odt.odt_to_ri(f, res=cfg["res"], nm=cfg["nm"])

sx, sy, sz = n.shape
px, py, pz = phantom.shape
    res = cfg["res"] # px/wavelengths
    A = cfg["A"] # number of projections

    #phantom = np.loadtxt(arc.open("mie_phantom.txt"))
    x = np.arange(size)-size/2.0
    X,Y = np.meshgrid(x,x)
    rad_px = radius*res
    phantom = np.array(((Y-lC*res)**2+X**2)<rad_px**2, dtype=np.float)*(ncyl-nmed)+nmed

    # Born
    u_sinB = (sino/u0*u0_single-u0_single) #fake born
    fB = odt.backpropagate_2d(u_sinB, angles, res, nmed, lD*res)
    nB = odt.odt_to_ri(fB, res, nmed)
    
    # Rytov
    u_sinR = odt.sinogram_as_rytov(sino/u0)
    fR = odt.backpropagate_2d(u_sinR, angles, res, nmed, lD*res)
    nR = odt.odt_to_ri(fR, res, nmed)
    
    # Rytov 50
    u_sinR50 = odt.sinogram_as_rytov((sino/u0)[::5,:])
    fR50 = odt.backpropagate_2d(u_sinR50, angles[::5], res, nmed, lD*res)
    nR50 = odt.odt_to_ri(fR50, res, nmed)
    
    
    # Plot sinogram phase and amplitude
    ph = unwrap.unwrap(np.angle(sino/u0))
    
    
    am = np.abs(sino/u0)
Ejemplo n.º 5
0
    ## Setup background
    t_RealBack = float('-1.60175172169E-02')
    t_ImagBack = float('-1.85142597885E-02')
    t_ComplexBack = t_RealBack + 1j*t_ImagBack
    # t_SinoBack = np.tile(t_ComplexBack, t_SudutProj*t_SensorInterp).reshape(t_SudutProj, t_SensorInterp)
    t_SinoBack = np.tile(t_ComplexBack, t_SudutInterp*t_SensorInterp).reshape(t_SudutInterp, t_SensorInterp)
    # print(t_SinoBack)

    ## Prep for Reconstruksi Citra
    t_Theta = np.linspace(0., 360., t_SudutInterp, endpoint=False)

    ## Do Fasa background corrected
    t_SinoCorrected = t_SinoSudutInterp/t_SinoBack

    ## Do backpropagate 2D
    u_sinR  = odt.sinogram_as_rytov(t_SinoCorrected)
    angles  = np.linspace(0, 2*np.pi, t_SudutInterp, endpoint=False)
    res     = 9.0
    nmed    = 2.4
    lD      = 1.0
    fR      = odt.backpropagate_2d(u_sinR, angles, res, nmed, lD * res)
    nR      = odt.odt_to_ri(fR, res, nmed)

    ## plot data
    fig, (ax1) = plt.subplots(1, 1)
    ax1.imshow(ndimage.median_filter(nR.real*-1, size=7))
    ax1.set_xlabel('pixel')
    ax1.set_ylabel('pixel')
    plt.show()
nmed = cfg["nmed"]
ncyl = cfg["ncyl"]

lD = cfg["lD"]  # measurement distance in wavelengths
lC = cfg["lC"]  # displacement from center of image
size = cfg["size"]
res = cfg["res"]  # px/wavelengths
A = cfg["A"]  # number of projections

x = np.arange(size) - size / 2.0
X, Y = np.meshgrid(x, x)
rad_px = radius * res
phantom = np.array(((Y - lC * res)**2 + X**2) < rad_px**2,
                   dtype=np.float) * (ncyl - nmed) + nmed

u_sinR = odt.sinogram_as_rytov(sino / u0)

# Rytov 200 projections
# remove 50 projections from total of 250 projections
remove200 = np.argsort(angles % .0002)[:50]
angles200 = np.delete(angles, remove200, axis=0)
u_sinR200 = np.delete(u_sinR, remove200, axis=0)
ph200 = unwrap.unwrap(np.angle(sino / u0))
ph200[remove200] = 0

fR200 = odt.backpropagate_2d(u_sinR200, angles200, res, nmed, lD * res)
nR200 = odt.odt_to_ri(fR200, res, nmed)
fR200nw = odt.backpropagate_2d(u_sinR200,
                               angles200,
                               res,
                               nmed,
Ejemplo n.º 7
0
    # t_SinoDeembeding = t_SinoInterp
    # t_Reconstruction = iradon_sart(np.abs(t_SinoInterp.transpose()) - np.abs(t_SinoBack.transpose()), theta=t_Theta, relaxation=0.1)
    # t_Reconstruction = iradon_sart(np.abs(t_Sino.transpose()), theta=t_Theta, relaxation=0.1)
    print(np.min(np.abs(t_SinoDeembeding)))
    print(np.max(np.abs(t_SinoDeembeding)))
    print(np.mean(np.abs(t_SinoDeembeding)))

    # t_Reconstruction = iradon_sart(np.abs(t_SinoDeembeding.transpose()), theta=t_Theta, relaxation=0.01)
    # t_Reconstruction = iradon_sart(np.abs(t_SinoDeembeding.transpose())*-1, theta=t_Theta, relaxation=0.01, clip=[0.02,0.04])
    # for i in range(50):
    # t_Reconstruction = iradon_sart(np.abs(t_SinoDeembeding.transpose()), theta=t_Theta, relaxation=0.01)

    # t_Reconstruction = iradon(t_SinoDeembeding.transpose(), filter="ramp" ,interpolation="cubic", circle=False, theta=t_Theta)

    # u_sinR = odt.sinogram_as_rytov(t_SinoSudutInterp / t_SinoBack)
    u_sinR = odt.sinogram_as_rytov(t_SinoDeembeding)
    angles = np.linspace(0, 2 * np.pi, t_SudutInterp, endpoint=False)
    res = 9.0
    nmed = 2.4
    lD = 1.0
    fR = odt.backpropagate_2d(u_sinR, angles, res, nmed, lD * res)
    nR = odt.odt_to_ri(fR, res, nmed)

    ## Interpolasi multivariate
    # t_InterpVal = 100
    # x = np.linspace(0, t_SensorInterp-1, t_SensorInterp)
    # y = np.linspace(0, t_SensorInterp-1, t_SensorInterp)
    # X, Y = np.meshgrid(x, y)
    # px = np.random.choice(x, t_InterpVal)
    # py = np.random.choice(y, t_InterpVal)
    # print(t_Reconstruction.flatten().shape)
res = cfg["res"]  # px/wavelengths
A = cfg["A"]  # number of projections

x = np.arange(size) - size / 2
X, Y = np.meshgrid(x, x)
rad_px = radius * res
phantom = np.array(((Y - lC * res)**2 + X**2) < rad_px**2,
                   dtype=np.float) * (ncyl - nmed) + nmed

# Born
u_sinB = (sino / u0 * u0_single - u0_single)  # fake born
fB = odt.backpropagate_2d(u_sinB, angles, res, nmed, lD * res)
nB = odt.odt_to_ri(fB, res, nmed)

# Rytov
u_sinR = odt.sinogram_as_rytov(sino / u0)
fR = odt.backpropagate_2d(u_sinR, angles, res, nmed, lD * res)
nR = odt.odt_to_ri(fR, res, nmed)

# Rytov 50
u_sinR50 = odt.sinogram_as_rytov((sino / u0)[::5, :])
fR50 = odt.backpropagate_2d(u_sinR50, angles[::5], res, nmed, lD * res)
nR50 = odt.odt_to_ri(fR50, res, nmed)

# Plot sinogram phase and amplitude
ph = odt.sinogram_as_radon(sino / u0)

am = np.abs(sino / u0)

# prepare plot
vmin = np.min(np.array([phantom, nB.real, nR50.real, nR.real]))
    nmed = cfg["nmed"]
    ncyl = cfg["ncyl"]
    
    lD = cfg["lD"] # measurement distance in wavelengths
    lC = cfg["lC"] # displacement from center of image
    size = cfg["size"]
    res = cfg["res"] # px/wavelengths
    A = cfg["A"] # number of projections

    #phantom = np.loadtxt(arc.open("mie_phantom.txt"))
    x = np.arange(size)-size/2.0
    X,Y = np.meshgrid(x,x)
    rad_px = radius*res
    phantom = np.array(((Y-lC*res)**2+X**2)<rad_px**2, dtype=np.float)*(ncyl-nmed)+nmed

    u_sinR = odt.sinogram_as_rytov(sino/u0)
    
    # Rytov 200 projections    
    # remove 50 projections from total of 250 projections
    remove200 = np.argsort(angles % .002)[:50]
    angles200 = np.delete(angles, remove200, axis=0)
    u_sinR200 = np.delete(u_sinR, remove200, axis=0)
    ph200 = unwrap.unwrap(np.angle(sino/u0))
    ph200[remove200] = 0
    
    fR200 = odt.backpropagate_2d(u_sinR200, angles200, res, nmed, lD*res)
    nR200 = odt.odt_to_ri(fR200, res, nmed)
    fR200nw = odt.backpropagate_2d(u_sinR200, angles200, res, nmed, lD*res, weight_angles=False)
    nR200nw = odt.odt_to_ri(fR200nw, res, nmed)
    
    
Ejemplo n.º 10
0
medium_index = 1.335

# initialize cell phantom
phantom = cellsino.phantoms.SimpleCell()

# initialize sinogram with geometric parameters
sino = cellsino.Sinogram(phantom=phantom,
                         wavelength=wavelength,
                         pixel_size=pixel_size,
                         grid_size=grid_size)

# compute sinogram (field according to Rytov approximation and fluorescence)
sino_field, sino_fluor = sino.compute(angles=angles, propagator="rytov")

# reconstruction of refractive index
sino_rytov = odt.sinogram_as_rytov(sino_field)
potential = odt.backpropagate_3d(uSin=sino_rytov,
                                 angles=angles,
                                 res=wavelength/pixel_size,
                                 nm=medium_index)
ri = odt.odt_to_ri(f=potential,
                   res=wavelength/pixel_size,
                   nm=medium_index)

# reconstruction of fluorescence
fl = rt.backproject_3d(sinogram=sino_fluor,
                       angles=angles)

# reference for comparison
rimod, flmod = phantom.draw(grid_size=ri.shape,
                            pixel_size=pixel_size)
Ejemplo n.º 11
0
    ## Interpolation
    # t_NX, t_NY = t_Data.shape
    # t_X = t_Data[0]
    # t_DataInterp

    ## Backprojection
    # t_Reconstruction = iradon_sart(t_Data)
    # t_Reconstruction = iradon(t_Data, filter="ramp" ,interpolation="linear", circle=True, output_size=73*2)
    # for i in range(20):
        # t_Reconstruction = iradon_sart(t_Data, image=t_Reconstruction)

    ## Backpropagation
    # u_sinR = odt.sinogram_as_rytov(t_SinoInterp.reshape(t_SudutProj, t_SensorInterp), u0=t_DataBackground)
    # u_sinR = odt.sinogram_as_rytov(t_SinoInterp.reshape(t_SudutProj, t_SensorInterp))
    u_sinR = odt.sinogram_as_rytov(t_SinoInterp)
    # for x_back in range(72):
    #     for y_back in range(72):
    #         if t_DataBackground[x_back,y_back] == 0. :
    #             t_DataBackground[x_back, y_back] = 1.

    # u_sinR = t_SinoInterp.reshape(t_SudutProj, t_SensorInterp)/t_DataBackground
    # u_sinR = t_SinoInterp.reshape(t_SudutProj, t_SensorInterp)
    t_Theta = np.linspace(0., 360., t_SudutProj, endpoint=False)
    # t_Reconstruction = iradon(t_DataInterp.transpose(), filter="ramp" ,interpolation="linear", circle=True, theta=t_Theta)
    # t_Reconstruction = iradon(t_DataInterp.transpose(), filter="ramp" ,interpolation="linear", circle=False, theta=t_Theta)
    # t_Reconstruction = radontea.backproject(t_DataInterp.transpose(), t_Theta)
    t_Reconstruction = radontea.fan.radon_fan(t_DataInterp.transpose(), det_size=9, det_spacing=2)
    print(t_Reconstruction.shape)
    # t_Reconstruction = iradon_sart(t_DataInterp.transpose(), theta=t_Theta, relaxation=0.01)
    # for i in range(10):
    if autofocus:
        Ex, d = nrefocus.autofocus(Ex, 
                                   cfg["nm"], 
                                   cfg["res"],
                                   (-1.5*cfg["lD"]*cfg["res"],0),
                                   ret_d=True)
        lD = 0
        print("Autofocusing distance [px]: ", d)
    else:
        lD = cfg["lD"]*cfg["res"]

    # Create sinogram
    u_sin = np.tile(Ex.flat,A).reshape(A, cfg["size"], cfg["size"])

    # Apply the Rytov approximation
    u_sinR = odt.sinogram_as_rytov(u_sin)

    # Backpropagation
    fR = odt.backpropagate_3d(uSin = u_sinR, 
                              angles = angles, 
                              res = cfg["res"],
                              nm = cfg["nm"],
                              lD = lD,
                              padfac=2.1)

    # RI computation
    nR = odt.odt_to_ri(fR, cfg["res"], cfg["nm"])

    # Plotting
    fig, axes = plt.subplots(2, 3, figsize=(12,8), dpi=300)
    axes = np.array(axes).flatten()
Ejemplo n.º 13
0
def backpropagate_sinogram(
    sinogram,
    angles,
    approx,
    res,
    nm,
    ld=0,
):
    """Backpropagate a 2D or 3D sinogram

    Parameters
    ----------
    sinogram: complex ndarray
        The scattered field data
    angles: 1d ndarray
        The angles at which the sinogram data were recorded
    approx: str
        Approximation to use, one of ["radon", "born", "rytov"]
    res: float
        Size of vacuum wavelength in pixels
    nm: float
        Refractive index of surrounding medium
    ld: float
        Reconstruction distance. Values !=0 only make sense for the
        Born approximation (which itself is not very usable).
        See the ODTbrain documentation for more information.

    Returns
    -------
    ri: ndarray
        The 2D or 3D reconstructed refractive index
    """
    sshape = len(sinogram.shape)
    assert sshape in [2, 3], "sinogram must have dimension 2 or 3"

    uSin = sinogram
    assert approx in ["radon", "born", "rytov"]

    if approx == "rytov":
        uSin = odt.sinogram_as_rytov(uSin)
    elif approx == "radon":
        uSin = odt.sinogram_as_radon(uSin)

    if approx in ["born", "rytov"]:
        # Perform reconstruction with ODT
        if sshape == 2:
            f = odt.backpropagate_2d(uSin,
                                     angles=angles,
                                     res=res,
                                     nm=nm,
                                     lD=ld)
        else:
            f = odt.backpropagate_3d(uSin,
                                     angles=angles,
                                     res=res,
                                     nm=nm,
                                     lD=ld)

        ri = odt.odt_to_ri(f, res, nm)
    else:
        # Perform reconstruction with OPT
        # works in 2d and 3d
        f = rt.backproject(uSin, angles=angles)
        ri = odt.opt_to_ri(f, res, nm)

    return ri
Ejemplo n.º 14
0
        cfg = {}
        for l in info.readlines():
            l = l.decode()
            if l.count("=") == 1:
                key, val = l.split("=")
                cfg[key.strip()] = float(val.strip())

    print("Example: Backpropagation from 2d FDTD simulations")
    print("Refractive index of medium:", cfg["nm"])
    print("Measurement position from object center:", cfg["lD"])
    print("Wavelength sampling:", cfg["res"])
    print("Performing backpropagation.")


    ## Apply the Rytov approximation
    sinoRytov = odt.sinogram_as_rytov(sino)


    ## perform backpropagation to obtain object function f
    f = odt.backpropagate_2d( uSin=sinoRytov,
                              angles=angles,
                              res=cfg["res"],
                              nm=cfg["nm"],
                              lD=cfg["lD"]*cfg["res"]
                              )


    ## compute refractive index n from object function
    n = odt.odt_to_ri(f, res=cfg["res"], nm=cfg["nm"])

# Reconstruction angles
angles = np.linspace(0, 2 * np.pi, A, endpoint=False)

# Perform focusing
Ex = nrefocus.refocus(
    Ex,
    d=-cfg["lD"] * cfg["res"],
    nm=cfg["nm"],
    res=cfg["res"],
)

# Create sinogram
u_sin = np.tile(Ex.flat, A).reshape(A, int(cfg["size"]), int(cfg["size"]))

# Apply the Rytov approximation
u_sinR = odt.sinogram_as_rytov(u_sin)

# Backpropagation
fR = odt.backpropagate_3d(uSin=u_sinR,
                          angles=angles,
                          res=cfg["res"],
                          nm=cfg["nm"],
                          lD=0,
                          padfac=2.1,
                          save_memory=True)

# RI computation
nR = odt.odt_to_ri(fR, cfg["res"], cfg["nm"])

# Plotting
fig, axes = plt.subplots(2, 3, figsize=(8, 5))