Ejemplo n.º 1
0
def test_generic_storage_with_old_parameters():
    deprecated = {
        'nominal_capacity': 45,
        'initial_capacity': 0,
        'capacity_loss': 0,
        'capacity_min': 0,
        'capacity_max': 0,
    }
    # Make sure an `AttributeError` is raised if we supply all deprecated
    # parameters.
    with pytest.raises(AttributeError) as caught:
        components.GenericStorage(
            label='`GenericStorage` with all deprecated parameters',
            **deprecated)
    for parameter in deprecated:
        # Make sure every parameter used is mentioned in the exception's
        # message.
        assert parameter in str(caught.value)
        # Make sure an `AttributeError` is raised for each deprecated
        # parameter.
        pytest.raises(
            AttributeError, components.GenericStorage, **{
                "label": "`GenericStorage` with `{}`".format(parameter),
                parameter: deprecated[parameter],
            })
Ejemplo n.º 2
0
def test_generic_storage_with_convex_invest_offset():
    """Offset value is given and nonconvex is False."""
    with pytest.raises(AttributeError,
                       match=r"If `nonconvex` is `False`, the `offset`"):
        bel = Bus()
        components.GenericStorage(label='storage6',
                                  inputs={bel: Flow()},
                                  outputs={bel: Flow()},
                                  invest_relation_input_capacity=1 / 6,
                                  invest_relation_output_capacity=1 / 6,
                                  investment=Investment(offset=10))
Ejemplo n.º 3
0
def test_generic_storage_with_non_convex_invest_maximum():
    """No investment maximum at nonconvex investment."""
    with pytest.raises(AttributeError,
                       match=r"Please provide an maximum investment value"):
        bel = Bus()
        components.GenericStorage(label='storage6',
                                  inputs={bel: Flow()},
                                  outputs={bel: Flow()},
                                  invest_relation_input_capacity=1 / 6,
                                  invest_relation_output_capacity=1 / 6,
                                  investment=Investment(nonconvex=True))
Ejemplo n.º 4
0
def test_generic_storage_3():
    """Nominal value defined with investment model."""
    bel = Bus()
    components.GenericStorage(
        label='storage4',
        nominal_storage_capacity=45,
        inputs={bel: Flow(nominal_value=23, variable_costs=10e10)},
        outputs={bel: Flow(nominal_value=7.5, variable_costs=10e10)},
        loss_rate=0.00,
        initial_storage_level=0,
        inflow_conversion_factor=1,
        outflow_conversion_factor=0.8)
Ejemplo n.º 5
0
def test_generic_storage_with_non_convex_investment():
    """Tests error if `offset` and `existing` attribute are given."""
    with pytest.raises(AttributeError,
                       match=r"Values for 'offset' and 'existing' are given"):
        bel = Bus()
        components.GenericStorage(label='storage4',
                                  inputs={bel: Flow()},
                                  outputs={bel: Flow()},
                                  invest_relation_input_capacity=1 / 6,
                                  invest_relation_output_capacity=1 / 6,
                                  investment=Investment(nonconvex=True,
                                                        existing=5,
                                                        maximum=25))
Ejemplo n.º 6
0
def test_generic_storage_2():
    """Nominal value defined with investment model."""
    bel = Bus()
    with pytest.raises(AttributeError, match="If an investment object"):
        components.GenericStorage(label='storage3',
                                  nominal_storage_capacity=45,
                                  inputs={bel: Flow(variable_costs=10e10)},
                                  outputs={bel: Flow(variable_costs=10e10)},
                                  loss_rate=0.00,
                                  initial_storage_level=0,
                                  invest_relation_input_capacity=1 / 6,
                                  invest_relation_output_capacity=1 / 6,
                                  inflow_conversion_factor=1,
                                  outflow_conversion_factor=0.8,
                                  investment=Investment(ep_costs=23))
Ejemplo n.º 7
0
def test_generic_storage_1():
    """Duplicate definition inflow."""
    bel = Bus()
    with pytest.raises(AttributeError, match="Overdetermined."):
        components.GenericStorage(label='storage1',
                                  inputs={bel: Flow(variable_costs=10e10)},
                                  outputs={bel: Flow(variable_costs=10e10)},
                                  loss_rate=0.00,
                                  initial_storage_level=0,
                                  invest_relation_input_output=1,
                                  invest_relation_output_capacity=1,
                                  invest_relation_input_capacity=1,
                                  investment=Investment(),
                                  inflow_conversion_factor=1,
                                  outflow_conversion_factor=0.8)
Ejemplo n.º 8
0
def test_generic_storage_with_invest_and_fixed_losses_absolute():
    """
    Storage with fixed losses in the investment mode but no minimum or existing
    value is set an AttributeError is raised because this may result in storage
    with zero capacity but fixed losses.
    """
    msg = (r"With fixed_losses_absolute > 0, either investment.existing or"
           " investment.minimum has to be non-zero.")
    with pytest.raises(AttributeError, match=msg):
        bel = Bus()
        components.GenericStorage(
            label='storage4',
            inputs={bel: Flow()},
            outputs={bel: Flow()},
            investment=Investment(ep_costs=23, minimum=0, existing=0),
            fixed_losses_absolute=[0, 0, 4],
        )
       })

Sink(label='demand_el',
     inputs={
         bel:
         Flow(actual_value=timeseries['demand_el'],
              fixed=True,
              nominal_value=500)
     })

components.GenericStorage(
    label='storage',
    inputs={bel: Flow()},
    outputs={bel: Flow()},
    capacity_loss=0.00,
    initial_capacity=0.5,
    invest_relation_input_capacity=1 / 6,
    invest_relation_output_capacity=1 / 6,
    inflow_conversion_factor=0.95,
    outflow_conversion_factor=0.95,
    investment=Investment(ep_costs=costs['storage']['epc']))

#################################################################
# Create model and solve
#################################################################

m = Model(energysystem)

# om.write(filename, io_options={'symbolic_solver_labels': True})

m.solve(solver='cbc', solve_kwargs={'tee': True})
Ejemplo n.º 10
0
def diesel_only(mode,
                feedin,
                initial_batt_cap,
                cost,
                iterstatus=None,
                PV_source=True,
                storage_source=True,
                logger=False):

    if logger == 1:
        logger.define_logging()

    ##################################### Initialize the energy system##################################################

    # times = pd.DatetimeIndex(start='04/01/2017', periods=10, freq='H')
    times = feedin.index

    energysystem = EnergySystem(timeindex=times)

    # switch on automatic registration of entities of EnergySystem-object=energysystem

    Node.registry = energysystem

    # add components

    b_el = Bus(label='electricity')
    b_dc = Bus(label='electricity_dc')
    b_oil = Bus(label='diesel_source')

    demand_feedin = feedin['demand_el']

    Sink(label='demand',
         inputs={
             b_el: Flow(actual_value=demand_feedin,
                        nominal_value=1,
                        fixed=True)
         })

    Sink(label='excess', inputs={b_el: Flow()})

    Source(label='diesel', outputs={b_oil: Flow()})

    generator1 = custom.DieselGenerator(
        label='pp_oil_1',
        fuel_input={b_oil: Flow(variable_costs=cost['pp_oil_1']['var'])},
        electrical_output={
            b_el:
            Flow(nominal_value=186,
                 min=0.3,
                 max=1,
                 nonconvex=NonConvex(om_costs=cost['pp_oil_1']['o&m']),
                 fixed_costs=cost['pp_oil_1']['fix'])
        },
        fuel_curve={
            '1': 42,
            '0.75': 33,
            '0.5': 22,
            '0.25': 16
        })

    generator2 = custom.DieselGenerator(
        label='pp_oil_2',
        fuel_input={b_oil: Flow(variable_costs=cost['pp_oil_2']['var'])},
        electrical_output={
            b_el:
            Flow(nominal_value=186,
                 min=0.3,
                 max=1,
                 nonconvex=NonConvex(om_costs=cost['pp_oil_2']['o&m']),
                 fixed_costs=cost['pp_oil_2']['fix'],
                 variable_costs=0)
        },
        fuel_curve={
            '1': 42,
            '0.75': 33,
            '0.5': 22,
            '0.25': 16
        })

    generator3 = custom.DieselGenerator(
        label='pp_oil_3',
        fuel_input={b_oil: Flow(variable_costs=cost['pp_oil_3']['var'])},
        electrical_output={
            b_el:
            Flow(nominal_value=320,
                 min=0.3,
                 max=1,
                 nonconvex=NonConvex(om_costs=cost['pp_oil_3']['o&m']),
                 fixed_costs=cost['pp_oil_3']['fix'],
                 variable_costs=0)
        },
        fuel_curve={
            '1': 73,
            '0.75': 57,
            '0.5': 38,
            '0.25': 27
        })

    # List all generators in a list called gen_set
    gen_set = [generator1, generator2, generator3]

    sim_params = get_sim_params(cost)

    if mode == 'simulation':
        nominal_cap_pv = sim_params['pv']['nominal_capacity']
        inv_pv = None
        nominal_cap_batt = sim_params['storage']['nominal_capacity']
        inv_batt = None
    elif mode == 'investment':
        nominal_cap_pv = None
        inv_pv = sim_params['pv']['investment']
        nominal_cap_batt = None
        inv_batt = sim_params['storage']['investment']
    else:
        raise (
            UserWarning,
            'Energysystem cant be build. Check if mode is spelled correctely. '
            'It can be either [simulation] or [investment]')

    if PV_source == 1:
        PV = Source(label='PV',
                    outputs={
                        b_dc:
                        Flow(nominal_value=nominal_cap_pv,
                             fixed_costs=cost['pv']['fix'],
                             actual_value=feedin['PV'],
                             fixed=True,
                             investment=inv_pv)
                    })
    else:
        PV = None

    if storage_source == 1:
        storage = components.GenericStorage(
            label='storage',
            inputs={b_dc: Flow()},
            outputs={
                b_dc:
                Flow(variable_costs=cost['storage']['var'],
                     fixed_costs=cost['storage']['fix'])
            },
            nominal_capacity=nominal_cap_batt,
            capacity_loss=0.00,
            initial_capacity=initial_batt_cap,
            nominal_input_capacity_ratio=0.546,
            nominal_output_capacity_ratio=0.546,
            inflow_conversion_factor=0.92,
            outflow_conversion_factor=0.92,
            capacity_min=0.5,
            capacity_max=1,
            investment=inv_batt,
            initial_iteration=iterstatus)
    else:
        storage = None

    if storage_source == 1 or PV_source == 1:
        inverter1 = add_inverter(b_dc, b_el, 'Inv_pv')

    ################################# optimization ############################
    # create Optimization model based on energy_system
    logging.info("Create optimization problem")

    m = Model(energysystem)

    ################################# constraints ############################

    sr_requirement = 0.2
    sr_limit = demand_feedin * sr_requirement

    rm_requirement = 0.4
    rm_limit = demand_feedin * rm_requirement

    constraints.spinning_reserve_constraint(m,
                                            sr_limit,
                                            groups=gen_set,
                                            storage=storage)

    # constraints.n1_constraint(m, demand_feedin, groups=gen_set)

    constraints.gen_order_constraint(m, groups=gen_set)

    constraints.rotating_mass_constraint(m,
                                         rm_limit,
                                         groups=gen_set,
                                         storage=storage)

    return [m, gen_set]
Ejemplo n.º 11
0
Sink(label='demand_th',
     inputs={
         bth:
         Flow(actual_value=timeseries['demand_th'],
              fixed=True,
              nominal_value=500)
     })

Sink(label='spot_el',
     inputs={bel: Flow(variable_costs=timeseries['price_el'])})

components.GenericStorage(label='storage_th',
                          inputs={bth: Flow()},
                          outputs={bth: Flow()},
                          nominal_capacity=1500,
                          capacity_loss=0.00,
                          initial_capacity=0.5,
                          nominal_input_capacity_ratio=1 / 6,
                          nominal_output_capacity_ratio=1 / 6)

##########################################################################
# Create model and solve
##########################################################################

m = Model(energysystem)
# om.write(filename, io_options={'symbolic_solver_labels': True})

m.solve(solver='cbc', solve_kwargs={'tee': True})

results = processing.results(m)
Ejemplo n.º 12
0
       outputs={
           bel: Flow(nominal_value=50, nonconvex=NonConvex(),
                     variable_costs=60,
                     negative_gradient={'ub': 0.05, 'costs': 0},
                     positive_gradient={'ub': 0.05, 'costs': 0})})

Source(label='pp_bio',
       outputs={
           bel: Flow(nominal_value=5,
                     variable_costs=100)})

components.GenericStorage(
    label='storage_el',
    inputs={
        bel: Flow()},
    outputs={
        bel: Flow()},
    nominal_capacity=40,
    nominal_input_capacity_ratio=1/10,
    nominal_output_capacity_ratio=1/10,
)

# heat componentes
bth = Bus(label='bth')

bgas = Bus(label='bgas')

Source(label='gas',
       outputs={
           bgas: Flow()})

            })

Sink(label='demand_th',
     inputs={
         bth:
         Flow(actual_value=timeseries['demand_th'],
              fixed=True,
              nominal_value=500)
     })

Sink(label='spot_el',
     inputs={bel: Flow(variable_costs=timeseries['price_el'])})

components.GenericStorage(label='storage_th',
                          inputs={bth: Flow(nominal_value=1500 / 6)},
                          outputs={bth: Flow(nominal_value=1500 / 6)},
                          nominal_capacity=1500,
                          capacity_loss=0.00,
                          initial_capacity=0.5)

##########################################################################
# Create model and solve
##########################################################################

m = Model(energysystem)
# om.write(filename, io_options={'symbolic_solver_labels': True})

m.solve(solver='cbc', solve_kwargs={'tee': True})

results = processing.results(m)

views.node(results, 'bth')['sequences'][1:168].plot(drawstyle='steps')
Ejemplo n.º 14
0
def test_connect_invest():
    date_time_index = pd.date_range('1/1/2012', periods=24 * 7, freq='H')

    energysystem = EnergySystem(timeindex=date_time_index)
    network.Node.registry = energysystem

    # Read data file
    full_filename = os.path.join(os.path.dirname(__file__),
                                 'connect_invest.csv')
    data = pd.read_csv(full_filename, sep=",")

    logging.info('Create oemof objects')

    # create electricity bus
    bel1 = Bus(label="electricity1")
    bel2 = Bus(label="electricity2")

    # create excess component for the electricity bus to allow overproduction
    Sink(label='excess_bel', inputs={bel2: Flow()})
    Source(label='shortage', outputs={bel2: Flow(variable_costs=50000)})

    # create fixed source object representing wind power plants
    Source(label='wind',
           outputs={bel1: Flow(fix=data['wind'], nominal_value=1000000)})

    # create simple sink object representing the electrical demand
    Sink(label='demand',
         inputs={bel1: Flow(fix=data['demand_el'], nominal_value=1)})

    storage = components.GenericStorage(
        label='storage',
        inputs={bel1: Flow(variable_costs=10e10)},
        outputs={bel1: Flow(variable_costs=10e10)},
        loss_rate=0.00,
        initial_storage_level=0,
        invest_relation_input_capacity=1 / 6,
        invest_relation_output_capacity=1 / 6,
        inflow_conversion_factor=1,
        outflow_conversion_factor=0.8,
        investment=Investment(ep_costs=0.2),
    )

    line12 = Transformer(
        label="line12",
        inputs={bel1: Flow()},
        outputs={bel2: Flow(investment=Investment(ep_costs=20))})

    line21 = Transformer(
        label="line21",
        inputs={bel2: Flow()},
        outputs={bel1: Flow(investment=Investment(ep_costs=20))})

    om = Model(energysystem)

    constraints.equate_variables(om, om.InvestmentFlow.invest[line12, bel2],
                                 om.InvestmentFlow.invest[line21, bel1], 2)
    constraints.equate_variables(
        om, om.InvestmentFlow.invest[line12, bel2],
        om.GenericInvestmentStorageBlock.invest[storage])

    # if tee_switch is true solver messages will be displayed
    logging.info('Solve the optimization problem')
    om.solve(solver='cbc')

    # check if the new result object is working for custom components
    results = processing.results(om)

    my_results = dict()
    my_results['line12'] = float(views.node(results, 'line12')['scalars'])
    my_results['line21'] = float(views.node(results, 'line21')['scalars'])
    stor_res = views.node(results, 'storage')['scalars']
    my_results['storage_in'] = stor_res[(('electricity1', 'storage'),
                                         'invest')]
    my_results['storage'] = stor_res[(('storage', 'None'), 'invest')]
    my_results['storage_out'] = stor_res[(('storage', 'electricity1'),
                                          'invest')]

    connect_invest_dict = {
        'line12': 814705,
        'line21': 1629410,
        'storage': 814705,
        'storage_in': 135784,
        'storage_out': 135784
    }

    for key in connect_invest_dict.keys():
        eq_(int(round(my_results[key])), int(round(connect_invest_dict[key])))
Ejemplo n.º 15
0
def create_energysystem_model(mode, feedin, initial_batt_cap, cost, iterstatus=None, PV_source=True,
                              storage_source=True):
    """
       The function stes up the energy system model and resturns the operational model m, which equals the
       MILP formulation
       :param cost:     mode    optimization mode ['simulation','investment' ] as    str
                        feed    timeseries holding pv and demand_el values          pd.DataFrame
                        initial_batt_cap initial SOC of the battery  takes          float values from 0-1
                        cost    cost dict derived from get_cost_dict()              dict
                        iterstatus None (only important for RH)                     boolean
                        PV_source include PV source 'True', exclude 'False'         boolean
                        storage_source include BSS source 'True', exclude 'False'   boolean


       :return: m       operational model   oemof.solph.model
                gen_set list of oemof.solph.custom.EngineGenerator objects integrated in the model
       """

    ##################################### Initialize the energy system##################################################
    # initialize time steps
    # times = pd.DatetimeIndex(start='04/01/2017', periods=10, freq='H')
    times = feedin.index

    # initialize energy system object
    energysystem = EnergySystem( timeindex=times )

    # switch on automatic registration of entities of EnergySystem-object=energysystem

    Node.registry = energysystem

    # add components

    b_el = Bus( label='electricity' )
    b_dc = Bus( label='electricity_dc' )
    b_oil = Bus( label='diesel_source' )

    demand_feedin = feedin['demand_el']


    Sink( label='demand',
          inputs={b_el: Flow( actual_value=demand_feedin,
                              nominal_value=1,
                              fixed=True )} )

    Sink( label='excess',
          inputs={b_el: Flow()} )

    # add source in case of capacity shortages, to still find a feasible solution to the problem
    # Source(label='shortage_el',
    #        outputs={b_el: Flow(variable_costs=1000)})

    Source( label='diesel',
            outputs={b_oil: Flow()} )

    generator1 = custom.EngineGenerator( label='pp_oil_1',
                                         fuel_input={b_oil: Flow( variable_costs=cost['pp_oil_1']['var'] )},
                                         electrical_output={b_el: Flow( nominal_value=186,
                                                                        min=0.3,
                                                                        max=1,
                                                                        nonconvex=NonConvex(
                                                                            om_costs=cost['pp_oil_1']['o&m'] ),
                                                                        fixed_costs=cost['pp_oil_1']['fix']
                                                                        )},
                                         fuel_curve={'1': 42, '0.75': 33, '0.5': 22, '0.25': 16} )

    generator2 = custom.EngineGenerator( label='pp_oil_2',
                                         fuel_input={b_oil: Flow( variable_costs=cost['pp_oil_2']['var'] )},
                                         electrical_output={b_el: Flow( nominal_value=186,
                                                                        min=0.3,
                                                                        max=1,
                                                                        nonconvex=NonConvex(
                                                                            om_costs=cost['pp_oil_2']['o&m'] ),
                                                                        fixed_costs=cost['pp_oil_2']['fix'],
                                                                        variable_costs=0 )},
                                         fuel_curve={'1': 42, '0.75': 33, '0.5': 22, '0.25': 16} )

    generator3 = custom.EngineGenerator( label='pp_oil_3',
                                         fuel_input={b_oil: Flow( variable_costs=cost['pp_oil_3']['var'] )},
                                         electrical_output={b_el: Flow( nominal_value=320,
                                                                        min=0.3,
                                                                        max=1,
                                                                        nonconvex=NonConvex(
                                                                            om_costs=cost['pp_oil_3']['o&m'] ),
                                                                        fixed_costs=cost['pp_oil_3']['fix'],
                                                                        variable_costs=0 )},
                                         fuel_curve={'1': 73, '0.75': 57, '0.5': 38, '0.25': 27} )

    # List all generators in a list called gen_set
    gen_set = [generator1, generator2, generator3]

    sim_params = get_sim_params( cost )

    if mode == 'simulation':
        nominal_cap_pv = sim_params['pv']['nominal_capacity']
        inv_pv = None
        nominal_cap_batt = sim_params['storage']['nominal_capacity']
        inv_batt = None
    elif mode == 'investment':
        nominal_cap_pv = None
        inv_pv = sim_params['pv']['investment']
        nominal_cap_batt = None
        inv_batt = sim_params['storage']['investment']
    else:
        raise (UserWarning, 'Energysystem cant be build. Check if mode is spelled correctely. '
                            'It can be either [simulation] or [investment]')

    if PV_source == 1:
        PV = Source( label='PV',
                     outputs={b_dc: Flow( nominal_value=nominal_cap_pv,
                                          fixed_costs=cost['pv']['fix'],
                                          actual_value=feedin['PV'],
                                          fixed=True,
                                          investment=inv_pv )} )
    else:
        PV = None

    if storage_source == 1:
        storage = components.GenericStorage( label='storage',
                                             inputs={b_dc: Flow()},
                                             outputs={b_dc: Flow( variable_costs=cost['storage']['var'] )},
                                             fixed_costs=cost['storage']['fix'],
                                             nominal_capacity=nominal_cap_batt,
                                             capacity_loss=0.00,
                                             initial_capacity=initial_batt_cap,
                                             nominal_input_capacity_ratio=0.546,
                                             nominal_output_capacity_ratio=0.546,
                                             inflow_conversion_factor=0.92,
                                             outflow_conversion_factor=0.92,
                                             capacity_min=0.5,
                                             capacity_max=1,
                                             investment=inv_batt,
                                             initial_iteration=iterstatus )
    else:
        storage = None

    if storage_source == 1 or PV_source == 1:
        inverter1 = add_inverter( b_dc, b_el, 'Inv_pv' )

    ################################# optimization ############################
    # create Optimization model based on energy_system
    logging.info( "Create optimization problem" )

    m = Model( energysystem )

    ################################# constraints ############################
    # add constraints to the model

    #spinning reserve constraint
    sr_requirement = 0.2
    sr_limit = demand_feedin * sr_requirement

    #rotating mass constraint
    rm_requirement = 0.4
    rm_limit = demand_feedin * rm_requirement

    constraints.spinning_reserve_constraint( m, sr_limit, groups=gen_set, storage=storage )

    #(N-1) is turned of for Lifuka case study
    # constraints.n1_constraint(m, demand_feedin, groups=gen_set)

    #generator order constraint
    constraints.gen_order_constraint( m, groups=gen_set )

    constraints.rotating_mass_constraint( m, rm_limit, groups=gen_set, storage=storage )

    return [m, gen_set]