Ejemplo n.º 1
0
    def set_active_subnet(self, d=None, e=None, w=None, **kwargs):
        depth = val2list(d, len(ResNets.BASE_DEPTH_LIST) + 1)
        expand_ratio = val2list(e, len(self.blocks))
        width_mult = val2list(w, len(ResNets.BASE_DEPTH_LIST) + 2)

        for block, e in zip(self.blocks, expand_ratio):
            if e is not None:
                block.active_expand_ratio = e

        if width_mult[0] is not None:
            self.input_stem[1].conv.active_out_channel = self.input_stem[0].active_out_channel = \
             self.input_stem[0].out_channel_list[width_mult[0]]
        if width_mult[1] is not None:
            self.input_stem[2].active_out_channel = self.input_stem[
                2].out_channel_list[width_mult[1]]

        if depth[0] is not None:
            self.input_stem_skipping = (depth[0] != max(self.depth_list))
        for stage_id, (block_idx, d, w) in enumerate(
                zip(self.grouped_block_index, depth[1:], width_mult[2:])):
            if d is not None:
                self.runtime_depth[stage_id] = max(self.depth_list) - d
            if w is not None:
                for idx in block_idx:
                    self.blocks[idx].active_out_channel = self.blocks[
                        idx].out_channel_list[w]
Ejemplo n.º 2
0
    def __init__(self,
                 in_channel_list,
                 out_channel_list,
                 kernel_size_list=3,
                 expand_ratio_list=6,
                 stride=1,
                 act_func='relu6',
                 use_se=False):
        super(DynamicMBConvLayer, self).__init__()

        self.in_channel_list = in_channel_list
        self.out_channel_list = out_channel_list

        self.kernel_size_list = val2list(kernel_size_list)
        self.expand_ratio_list = val2list(expand_ratio_list)

        self.stride = stride
        self.act_func = act_func
        self.use_se = use_se

        # build modules
        max_middle_channel = make_divisible(
            round(max(self.in_channel_list) * max(self.expand_ratio_list)),
            MyNetwork.CHANNEL_DIVISIBLE)
        if max(self.expand_ratio_list) == 1:
            self.inverted_bottleneck = None
        else:
            self.inverted_bottleneck = nn.Sequential(
                OrderedDict([
                    ('conv',
                     DynamicConv2d(max(self.in_channel_list),
                                   max_middle_channel)),
                    ('bn', DynamicBatchNorm2d(max_middle_channel)),
                    ('act', build_activation(self.act_func)),
                ]))

        self.depth_conv = nn.Sequential(
            OrderedDict([('conv',
                          DynamicSeparableConv2d(max_middle_channel,
                                                 self.kernel_size_list,
                                                 self.stride)),
                         ('bn', DynamicBatchNorm2d(max_middle_channel)),
                         ('act', build_activation(self.act_func))]))
        if self.use_se:
            self.depth_conv.add_module('se', DynamicSE(max_middle_channel))

        self.point_linear = nn.Sequential(
            OrderedDict([
                ('conv',
                 DynamicConv2d(max_middle_channel,
                               max(self.out_channel_list))),
                ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
            ]))

        self.active_kernel_size = max(self.kernel_size_list)
        self.active_expand_ratio = max(self.expand_ratio_list)
        self.active_out_channel = max(self.out_channel_list)
Ejemplo n.º 3
0
    def set_active_subnet(self, ks=None, e=None, d=None, **kwargs):
        ks = val2list(ks, len(self.blocks) - 1)
        expand_ratio = val2list(e, len(self.blocks) - 1)
        depth = val2list(d, len(self.block_group_info))

        for block, k, e in zip(self.blocks[1:], ks, expand_ratio):
            if k is not None:
                block.conv.active_kernel_size = k
            if e is not None:
                block.conv.active_expand_ratio = e

        for i, d in enumerate(depth):
            if d is not None:
                self.runtime_depth[i] = min(len(self.block_group_info[i]), d)
Ejemplo n.º 4
0
    def __init__(self,
                 in_channel_list,
                 out_channel_list,
                 expand_ratio_list=0.25,
                 kernel_size=3,
                 stride=1,
                 act_func='relu',
                 downsample_mode='avgpool_conv'):
        super(DynamicResNetBottleneckBlock, self).__init__()

        self.in_channel_list = in_channel_list
        self.out_channel_list = out_channel_list
        self.expand_ratio_list = val2list(expand_ratio_list)

        self.kernel_size = kernel_size
        self.stride = stride
        self.act_func = act_func
        self.downsample_mode = downsample_mode

        # build modules
        max_middle_channel = make_divisible(
            round(max(self.out_channel_list) * max(self.expand_ratio_list)),
            MyNetwork.CHANNEL_DIVISIBLE)

        self.conv1 = nn.Sequential(
            OrderedDict([
                ('conv',
                 DynamicConv2d(max(self.in_channel_list), max_middle_channel)),
                ('bn', DynamicBatchNorm2d(max_middle_channel)),
                ('act', build_activation(self.act_func, inplace=True)),
            ]))

        self.conv2 = nn.Sequential(
            OrderedDict([('conv',
                          DynamicConv2d(max_middle_channel, max_middle_channel,
                                        kernel_size, stride)),
                         ('bn', DynamicBatchNorm2d(max_middle_channel)),
                         ('act', build_activation(self.act_func,
                                                  inplace=True))]))

        self.conv3 = nn.Sequential(
            OrderedDict([
                ('conv',
                 DynamicConv2d(max_middle_channel,
                               max(self.out_channel_list))),
                ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
            ]))

        if self.stride == 1 and self.in_channel_list == self.out_channel_list:
            self.downsample = IdentityLayer(max(self.in_channel_list),
                                            max(self.out_channel_list))
        elif self.downsample_mode == 'conv':
            self.downsample = nn.Sequential(
                OrderedDict([
                    ('conv',
                     DynamicConv2d(max(self.in_channel_list),
                                   max(self.out_channel_list),
                                   stride=stride)),
                    ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
                ]))
        elif self.downsample_mode == 'avgpool_conv':
            self.downsample = nn.Sequential(
                OrderedDict([
                    ('avg_pool',
                     nn.AvgPool2d(kernel_size=stride,
                                  stride=stride,
                                  padding=0,
                                  ceil_mode=True)),
                    ('conv',
                     DynamicConv2d(max(self.in_channel_list),
                                   max(self.out_channel_list))),
                    ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
                ]))
        else:
            raise NotImplementedError

        self.final_act = build_activation(self.act_func, inplace=True)

        self.active_expand_ratio = max(self.expand_ratio_list)
        self.active_out_channel = max(self.out_channel_list)
Ejemplo n.º 5
0
    def __init__(self,
                 n_classes=1000,
                 bn_param=(0.1, 1e-3),
                 dropout_rate=0.1,
                 base_stage_width=None,
                 width_mult=1.0,
                 ks_list=3,
                 expand_ratio_list=6,
                 depth_list=4):

        self.width_mult = width_mult
        self.ks_list = val2list(ks_list, 1)
        self.expand_ratio_list = val2list(expand_ratio_list, 1)
        self.depth_list = val2list(depth_list, 1)

        self.ks_list.sort()
        self.expand_ratio_list.sort()
        self.depth_list.sort()

        if base_stage_width == 'google':
            # MobileNetV2 Stage Width
            base_stage_width = [32, 16, 24, 32, 64, 96, 160, 320, 1280]
        else:
            # ProxylessNAS Stage Width
            base_stage_width = [32, 16, 24, 40, 80, 96, 192, 320, 1280]

        input_channel = make_divisible(base_stage_width[0] * self.width_mult,
                                       MyNetwork.CHANNEL_DIVISIBLE)
        first_block_width = make_divisible(
            base_stage_width[1] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE)
        last_channel = make_divisible(base_stage_width[-1] * self.width_mult,
                                      MyNetwork.CHANNEL_DIVISIBLE)

        # first conv layer
        first_conv = ConvLayer(3,
                               input_channel,
                               kernel_size=3,
                               stride=2,
                               use_bn=True,
                               act_func='relu6',
                               ops_order='weight_bn_act')
        # first block
        first_block_conv = MBConvLayer(
            in_channels=input_channel,
            out_channels=first_block_width,
            kernel_size=3,
            stride=1,
            expand_ratio=1,
            act_func='relu6',
        )
        first_block = ResidualBlock(first_block_conv, None)

        input_channel = first_block_width
        # inverted residual blocks
        self.block_group_info = []
        blocks = [first_block]
        _block_index = 1

        stride_stages = [2, 2, 2, 1, 2, 1]
        n_block_list = [max(self.depth_list)] * 5 + [1]

        width_list = []
        for base_width in base_stage_width[2:-1]:
            width = make_divisible(base_width * self.width_mult,
                                   MyNetwork.CHANNEL_DIVISIBLE)
            width_list.append(width)

        for width, n_block, s in zip(width_list, n_block_list, stride_stages):
            self.block_group_info.append(
                [_block_index + i for i in range(n_block)])
            _block_index += n_block

            output_channel = width
            for i in range(n_block):
                if i == 0:
                    stride = s
                else:
                    stride = 1

                mobile_inverted_conv = DynamicMBConvLayer(
                    in_channel_list=val2list(input_channel, 1),
                    out_channel_list=val2list(output_channel, 1),
                    kernel_size_list=ks_list,
                    expand_ratio_list=expand_ratio_list,
                    stride=stride,
                    act_func='relu6',
                )

                if stride == 1 and input_channel == output_channel:
                    shortcut = IdentityLayer(input_channel, input_channel)
                else:
                    shortcut = None

                mb_inverted_block = ResidualBlock(mobile_inverted_conv,
                                                  shortcut)

                blocks.append(mb_inverted_block)
                input_channel = output_channel
        # 1x1_conv before global average pooling
        feature_mix_layer = ConvLayer(
            input_channel,
            last_channel,
            kernel_size=1,
            use_bn=True,
            act_func='relu6',
        )
        classifier = LinearLayer(last_channel,
                                 n_classes,
                                 dropout_rate=dropout_rate)

        super(OFAProxylessNASNets,
              self).__init__(first_conv, blocks, feature_mix_layer, classifier)

        # set bn param
        self.set_bn_param(momentum=bn_param[0], eps=bn_param[1])

        # runtime_depth
        self.runtime_depth = [
            len(block_idx) for block_idx in self.block_group_info
        ]
Ejemplo n.º 6
0
    def __init__(self,
                 n_classes=1000,
                 bn_param=(0.1, 1e-5),
                 dropout_rate=0.1,
                 base_stage_width=None,
                 width_mult=1.0,
                 ks_list=3,
                 expand_ratio_list=6,
                 depth_list=4,
                 dropblock=False,
                 block_size=0):

        self.width_mult = width_mult
        self.ks_list = val2list(ks_list, 1)
        self.expand_ratio_list = val2list(expand_ratio_list, 1)
        self.depth_list = val2list(depth_list, 1)

        self.ks_list.sort()
        self.expand_ratio_list.sort()
        self.depth_list.sort()

        base_stage_width = [16, 16, 24, 40, 80, 112, 160, 960, 1280]

        final_expand_width = make_divisible(
            base_stage_width[-2] * self.width_mult,
            MyNetwork.CHANNEL_DIVISIBLE)
        last_channel = make_divisible(base_stage_width[-1] * self.width_mult,
                                      MyNetwork.CHANNEL_DIVISIBLE)

        stride_stages = [1, 2, 2, 2, 1, 2]
        act_stages = ['relu', 'relu', 'relu', 'h_swish', 'h_swish', 'h_swish']
        se_stages = [False, False, True, False, True, True]
        n_block_list = [1] + [max(self.depth_list)] * 5
        width_list = []
        for base_width in base_stage_width[:-2]:
            width = make_divisible(base_width * self.width_mult,
                                   MyNetwork.CHANNEL_DIVISIBLE)
            width_list.append(width)

        input_channel, first_block_dim = width_list[0], width_list[1]
        # first conv layer
        first_conv = ConvLayer(3,
                               input_channel,
                               kernel_size=3,
                               stride=2,
                               act_func='h_swish')
        first_block_conv = MBConvLayer(
            in_channels=input_channel,
            out_channels=first_block_dim,
            kernel_size=3,
            stride=stride_stages[0],
            expand_ratio=1,
            act_func=act_stages[0],
            use_se=se_stages[0],
        )
        first_block = ResidualBlock(
            first_block_conv,
            IdentityLayer(first_block_dim, first_block_dim) if input_channel
            == first_block_dim else None, dropout_rate, dropblock, block_size)

        # inverted residual blocks
        self.block_group_info = []
        blocks = [first_block]
        _block_index = 1
        feature_dim = first_block_dim

        for width, n_block, s, act_func, use_se in zip(width_list[2:],
                                                       n_block_list[1:],
                                                       stride_stages[1:],
                                                       act_stages[1:],
                                                       se_stages[1:]):
            self.block_group_info.append(
                [_block_index + i for i in range(n_block)])
            _block_index += n_block

            output_channel = width
            for i in range(n_block):
                if i == 0:
                    stride = s
                else:
                    stride = 1
                mobile_inverted_conv = DynamicMBConvLayer(
                    in_channel_list=val2list(feature_dim),
                    out_channel_list=val2list(output_channel),
                    kernel_size_list=ks_list,
                    expand_ratio_list=expand_ratio_list,
                    stride=stride,
                    act_func=act_func,
                    use_se=use_se,
                )
                if stride == 1 and feature_dim == output_channel:
                    shortcut = IdentityLayer(feature_dim, feature_dim)
                else:
                    shortcut = None
                blocks.append(
                    ResidualBlock(mobile_inverted_conv, shortcut, dropout_rate,
                                  dropblock, block_size))
                feature_dim = output_channel
        # final expand layer, feature mix layer & classifier
        final_expand_layer = ConvLayer(feature_dim,
                                       final_expand_width,
                                       kernel_size=1,
                                       act_func='h_swish')
        feature_mix_layer = ConvLayer(
            final_expand_width,
            last_channel,
            kernel_size=1,
            bias=False,
            use_bn=False,
            act_func='h_swish',
        )

        classifier = LinearLayer(last_channel,
                                 n_classes,
                                 dropout_rate=dropout_rate)

        super(OFAMobileNetV3,
              self).__init__(first_conv, blocks, final_expand_layer,
                             feature_mix_layer, classifier)

        # set bn param
        self.set_bn_param(momentum=bn_param[0], eps=bn_param[1])

        # runtime_depth
        self.runtime_depth = [
            len(block_idx) for block_idx in self.block_group_info
        ]
Ejemplo n.º 7
0
    def __init__(self,
                 n_classes=1000,
                 bn_param=(0.1, 1e-5),
                 dropout_rate=0,
                 depth_list=2,
                 expand_ratio_list=0.25,
                 width_mult_list=1.0):

        self.depth_list = val2list(depth_list)
        self.expand_ratio_list = val2list(expand_ratio_list)
        self.width_mult_list = val2list(width_mult_list)
        # sort
        self.depth_list.sort()
        self.expand_ratio_list.sort()
        self.width_mult_list.sort()

        input_channel = [
            make_divisible(64 * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
            for width_mult in self.width_mult_list
        ]
        mid_input_channel = [
            make_divisible(channel // 2, MyNetwork.CHANNEL_DIVISIBLE)
            for channel in input_channel
        ]

        stage_width_list = ResNets.STAGE_WIDTH_LIST.copy()
        for i, width in enumerate(stage_width_list):
            stage_width_list[i] = [
                make_divisible(width * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
                for width_mult in self.width_mult_list
            ]

        n_block_list = [
            base_depth + max(self.depth_list)
            for base_depth in ResNets.BASE_DEPTH_LIST
        ]
        stride_list = [1, 2, 2, 2]

        # build input stem
        input_stem = [
            DynamicConvLayer(val2list(3),
                             mid_input_channel,
                             3,
                             stride=2,
                             use_bn=True,
                             act_func='relu'),
            ResidualBlock(
                DynamicConvLayer(mid_input_channel,
                                 mid_input_channel,
                                 3,
                                 stride=1,
                                 use_bn=True,
                                 act_func='relu'),
                IdentityLayer(mid_input_channel, mid_input_channel)),
            DynamicConvLayer(mid_input_channel,
                             input_channel,
                             3,
                             stride=1,
                             use_bn=True,
                             act_func='relu')
        ]

        # blocks
        blocks = []
        for d, width, s in zip(n_block_list, stage_width_list, stride_list):
            for i in range(d):
                stride = s if i == 0 else 1
                bottleneck_block = DynamicResNetBottleneckBlock(
                    input_channel,
                    width,
                    expand_ratio_list=self.expand_ratio_list,
                    kernel_size=3,
                    stride=stride,
                    act_func='relu',
                    downsample_mode='avgpool_conv',
                )
                blocks.append(bottleneck_block)
                input_channel = width
        # classifier
        classifier = DynamicLinearLayer(input_channel,
                                        n_classes,
                                        dropout_rate=dropout_rate)

        super(OFAResNets, self).__init__(input_stem, blocks, classifier)

        # set bn param
        self.set_bn_param(*bn_param)

        # runtime_depth
        self.input_stem_skipping = 0
        self.runtime_depth = [0] * len(n_block_list)
Ejemplo n.º 8
0
    def __init__(self,
                 n_classes=1000,
                 width_mult=1.0,
                 bn_param=(0.1, 1e-3),
                 dropout_rate=0.2,
                 ks=None,
                 expand_ratio=None,
                 depth_param=None,
                 stage_width_list=None):

        ks = 3 if ks is None else ks
        expand_ratio = 6 if expand_ratio is None else expand_ratio

        input_channel = 32
        last_channel = 1280

        input_channel = make_divisible(input_channel * width_mult,
                                       MyNetwork.CHANNEL_DIVISIBLE)
        last_channel = make_divisible(last_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE) \
         if width_mult > 1.0 else last_channel

        inverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1],
            [expand_ratio, 24, 2, 2],
            [expand_ratio, 32, 3, 2],
            [expand_ratio, 64, 4, 2],
            [expand_ratio, 96, 3, 1],
            [expand_ratio, 160, 3, 2],
            [expand_ratio, 320, 1, 1],
        ]

        if depth_param is not None:
            assert isinstance(depth_param, int)
            for i in range(1, len(inverted_residual_setting) - 1):
                inverted_residual_setting[i][2] = depth_param

        if stage_width_list is not None:
            for i in range(len(inverted_residual_setting)):
                inverted_residual_setting[i][1] = stage_width_list[i]

        ks = val2list(ks,
                      sum([n for _, _, n, _ in inverted_residual_setting]) - 1)
        _pt = 0

        # first conv layer
        first_conv = ConvLayer(3,
                               input_channel,
                               kernel_size=3,
                               stride=2,
                               use_bn=True,
                               act_func='relu6',
                               ops_order='weight_bn_act')
        # inverted residual blocks
        blocks = []
        for t, c, n, s in inverted_residual_setting:
            output_channel = make_divisible(c * width_mult,
                                            MyNetwork.CHANNEL_DIVISIBLE)
            for i in range(n):
                if i == 0:
                    stride = s
                else:
                    stride = 1
                if t == 1:
                    kernel_size = 3
                else:
                    kernel_size = ks[_pt]
                    _pt += 1
                mobile_inverted_conv = MBConvLayer(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    kernel_size=kernel_size,
                    stride=stride,
                    expand_ratio=t,
                )
                if stride == 1:
                    if input_channel == output_channel:
                        shortcut = IdentityLayer(input_channel, input_channel)
                    else:
                        shortcut = None
                else:
                    shortcut = None
                blocks.append(ResidualBlock(mobile_inverted_conv, shortcut))
                input_channel = output_channel
        # 1x1_conv before global average pooling
        feature_mix_layer = ConvLayer(
            input_channel,
            last_channel,
            kernel_size=1,
            use_bn=True,
            act_func='relu6',
            ops_order='weight_bn_act',
        )

        classifier = LinearLayer(last_channel,
                                 n_classes,
                                 dropout_rate=dropout_rate)

        super(MobileNetV2, self).__init__(first_conv, blocks,
                                          feature_mix_layer, classifier)

        # set bn param
        self.set_bn_param(*bn_param)