Ejemplo n.º 1
0
def export_classifier(model_export_path, input_meta_data, bert_config,
                      model_dir):
    """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.

  Raises:
    Export path is not specified, got an empty string or None.
  """
    if not model_export_path:
        raise ValueError('Export path is not specified: %s' %
                         model_export_path)
    if not model_dir:
        raise ValueError('Export path is not specified: %s' % model_dir)

    # Export uses float32 for now, even if training uses mixed precision.
    tf.keras.mixed_precision.experimental.set_policy('float32')
    classifier_model = bert_models.classifier_model(
        bert_config,
        input_meta_data.get('num_labels', 1),
        hub_module_url=FLAGS.hub_module_url,
        hub_module_trainable=False)[0]

    model_saving_utils.export_bert_model(model_export_path,
                                         model=classifier_model,
                                         checkpoint_dir=model_dir)
def export_classifier(model_export_path, input_meta_data,
                      restore_model_using_load_weights):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
    restore_model_using_load_weights: Whether to use checkpoint.restore() API
      for custom checkpoint or to use model.load_weights() API.
      There are 2 different ways to save checkpoints. One is using
      tf.train.Checkpoint and another is using Keras model.save_weights().
      Custom training loop implementation uses tf.train.Checkpoint API
      and Keras ModelCheckpoint callback internally uses model.save_weights()
      API. Since these two API's cannot be used toghether, model loading logic
      must be take into account how model checkpoint was saved.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  classifier_model = bert_models.classifier_model(
      bert_config, tf.float32, input_meta_data['num_labels'],
      input_meta_data['max_seq_length'])[0]

  model_saving_utils.export_bert_model(
      model_export_path,
      model=classifier_model,
      checkpoint_dir=FLAGS.model_dir,
      restore_model_using_load_weights=restore_model_using_load_weights)
Ejemplo n.º 3
0
def run_bert(strategy,
             input_meta_data,
             train_input_fn=None,
             eval_input_fn=None):
  """Run BERT training."""
  if FLAGS.model_type == 'bert':
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  else:
    assert FLAGS.model_type == 'albert'
    bert_config = modeling.AlbertConfig.from_json_file(FLAGS.bert_config_file)
  if FLAGS.mode == 'export_only':
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    export_classifier(FLAGS.model_export_path, input_meta_data,
                      FLAGS.use_keras_compile_fit,
                      bert_config, FLAGS.model_dir)
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)

  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')

  trained_model = run_bert_classifier(
      strategy,
      bert_config,
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
      FLAGS.steps_per_loop,
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      FLAGS.init_checkpoint,
      train_input_fn,
      eval_input_fn,
      run_eagerly=FLAGS.run_eagerly,
      use_keras_compile_fit=FLAGS.use_keras_compile_fit)

  if FLAGS.model_export_path:
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    model_saving_utils.export_bert_model(
        FLAGS.model_export_path,
        model=trained_model,
        restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
  return trained_model
Ejemplo n.º 4
0
def run_bert(strategy,
             input_meta_data,
             model_config,
             train_input_fn=None,
             eval_input_fn=None,
             init_checkpoint=None,
             custom_callbacks=None,
             custom_metrics=None):
  """Run BERT training."""
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_session_config(FLAGS.enable_xla)
  performance.set_mixed_precision_policy(common_flags.dtype(),
                                         use_experimental_api=False)

  epochs = FLAGS.num_train_epochs * FLAGS.num_eval_per_epoch
  train_data_size = (
      input_meta_data['train_data_size'] // FLAGS.num_eval_per_epoch)
  if FLAGS.train_data_size:
    train_data_size = min(train_data_size, FLAGS.train_data_size)
    logging.info('Updated train_data_size: %s', train_data_size)
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')

  if not custom_callbacks:
    custom_callbacks = []

  if FLAGS.log_steps:
    custom_callbacks.append(
        keras_utils.TimeHistory(
            batch_size=FLAGS.train_batch_size,
            log_steps=FLAGS.log_steps,
            logdir=FLAGS.model_dir))

  trained_model, _ = run_bert_classifier(
      strategy,
      model_config,
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
      FLAGS.steps_per_loop,
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      init_checkpoint or FLAGS.init_checkpoint,
      train_input_fn,
      eval_input_fn,
      custom_callbacks=custom_callbacks,
      custom_metrics=custom_metrics)

  if FLAGS.model_export_path:
    model_saving_utils.export_bert_model(
        FLAGS.model_export_path, model=trained_model)
  return trained_model
Ejemplo n.º 5
0
def run_bert(strategy, input_meta_data):
    """Run BERT training."""
    if FLAGS.mode == 'export_only':
        export_classifier(FLAGS.model_export_path, input_meta_data)
        return

    if FLAGS.mode != 'train_and_eval':
        raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
    # Enables XLA in Session Config. Should not be set for TPU.
    keras_utils.set_config_v2(FLAGS.enable_xla)

    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
    epochs = FLAGS.num_train_epochs
    train_data_size = input_meta_data['train_data_size']
    steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
    warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
    eval_steps = int(
        math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

    if not strategy:
        raise ValueError('Distribution strategy has not been specified.')
    # Runs customized training loop.
    logging.info(
        'Training using customized training loop TF 2.0 with distrubuted'
        'strategy.')
    use_remote_tpu = (FLAGS.strategy_type == 'tpu' and FLAGS.tpu)
    trained_model = run_customized_training(strategy,
                                            bert_config,
                                            input_meta_data,
                                            FLAGS.model_dir,
                                            epochs,
                                            steps_per_epoch,
                                            FLAGS.steps_per_loop,
                                            eval_steps,
                                            warmup_steps,
                                            FLAGS.learning_rate,
                                            FLAGS.init_checkpoint,
                                            use_remote_tpu=use_remote_tpu,
                                            run_eagerly=FLAGS.run_eagerly)

    if FLAGS.model_export_path:
        with tf.device(tpu_lib.get_primary_cpu_task(use_remote_tpu)):
            model_saving_utils.export_bert_model(FLAGS.model_export_path,
                                                 model=trained_model)
    return trained_model
Ejemplo n.º 6
0
def export_squad(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  bert_config = MODEL_CLASSES[FLAGS.model_type][0].from_json_file(
      FLAGS.bert_config_file)
  squad_model, _ = bert_models.squad_model(
      bert_config, input_meta_data['max_seq_length'], float_type=tf.float32)
  model_saving_utils.export_bert_model(
      model_export_path, model=squad_model, checkpoint_dir=FLAGS.model_dir)
Ejemplo n.º 7
0
def export_squad(model_export_path, input_meta_data, bert_config):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
    bert_config: Bert configuration file to define core bert layers.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  # Export uses float32 for now, even if training uses mixed precision.
  tf.keras.mixed_precision.experimental.set_policy('float32')
  squad_model, _ = bert_models.squad_model(bert_config,
                                           input_meta_data['max_seq_length'])
  model_saving_utils.export_bert_model(
      model_export_path, model=squad_model, checkpoint_dir=FLAGS.model_dir)
Ejemplo n.º 8
0
def export_classifier(model_export_path, input_meta_data):
    """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
    if not model_export_path:
        raise ValueError('Export path is not specified: %s' %
                         model_export_path)
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    classifier_model = bert_models.classifier_model(
        bert_config, tf.float32, input_meta_data['num_labels'],
        input_meta_data['max_seq_length'])[0]
    model_saving_utils.export_bert_model(model_export_path,
                                         model=classifier_model,
                                         checkpoint_dir=FLAGS.model_dir)
Ejemplo n.º 9
0
def export_classifier(model_export_path, input_meta_data,
                      restore_model_using_load_weights, bert_config,
                      model_dir):
    """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
    restore_model_using_load_weights: Whether to use checkpoint.restore() API
      for custom checkpoint or to use model.load_weights() API. There are 2
      different ways to save checkpoints. One is using tf.train.Checkpoint and
      another is using Keras model.save_weights(). Custom training loop
      implementation uses tf.train.Checkpoint API and Keras ModelCheckpoint
      callback internally uses model.save_weights() API. Since these two API's
      cannot be used together, model loading logic must be take into account how
      model checkpoint was saved.
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.

  Raises:
    Export path is not specified, got an empty string or None.
  """
    if not model_export_path:
        raise ValueError('Export path is not specified: %s' %
                         model_export_path)
    if not model_dir:
        raise ValueError('Export path is not specified: %s' % model_dir)

    # Export uses float32 for now, even if training uses mixed precision.
    tf.keras.mixed_precision.experimental.set_policy('float32')
    classifier_model = bert_models.classifier_model(
        bert_config, input_meta_data['num_labels'],
        input_meta_data['max_seq_length'])[0]

    model_saving_utils.export_bert_model(
        model_export_path,
        model=classifier_model,
        checkpoint_dir=model_dir,
        restore_model_using_load_weights=restore_model_using_load_weights)
Ejemplo n.º 10
0
def run_bert(strategy, input_meta_data):
    """Run BERT training."""
    if FLAGS.mode == 'export_only':
        export_classifier(FLAGS.model_export_path, input_meta_data)
        return

    if FLAGS.mode != 'train_and_eval':
        raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
    # Enables XLA in Session Config. Should not be set for TPU.
    keras_utils.set_config_v2(FLAGS.enable_xla)

    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
    epochs = FLAGS.num_train_epochs
    train_data_size = input_meta_data['train_data_size']
    steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
    warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
    eval_steps = int(
        math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

    if not strategy:
        raise ValueError('Distribution strategy has not been specified.')

    trained_model = run_bert_classifier(strategy,
                                        bert_config,
                                        input_meta_data,
                                        FLAGS.model_dir,
                                        epochs,
                                        steps_per_epoch,
                                        FLAGS.steps_per_loop,
                                        eval_steps,
                                        warmup_steps,
                                        FLAGS.learning_rate,
                                        FLAGS.init_checkpoint,
                                        run_eagerly=FLAGS.run_eagerly)

    if FLAGS.model_export_path:
        model_saving_utils.export_bert_model(FLAGS.model_export_path,
                                             model=trained_model)
    return trained_model
Ejemplo n.º 11
0
def run_bert(strategy,
             input_meta_data,
             model_config,
             train_input_fn=None,
             eval_input_fn=None,
             init_checkpoint=None,
             custom_callbacks=None):
  """Run BERT training."""
  if FLAGS.mode == 'export_only':
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    export_classifier(FLAGS.model_export_path, input_meta_data,
                      FLAGS.use_keras_compile_fit,
                      model_config, FLAGS.model_dir)
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
  performance.set_mixed_precision_policy(common_flags.dtype())

  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')

  if not custom_callbacks:
    custom_callbacks = []

  if FLAGS.log_steps:
    custom_callbacks.append(keras_utils.TimeHistory(
        batch_size=FLAGS.train_batch_size,
        log_steps=FLAGS.log_steps,
        logdir=FLAGS.model_dir))

  trained_model = run_bert_classifier(
      strategy,
      model_config,
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
      FLAGS.steps_per_loop,
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      init_checkpoint or FLAGS.init_checkpoint,
      train_input_fn,
      eval_input_fn,
      run_eagerly=FLAGS.run_eagerly,
      use_keras_compile_fit=FLAGS.use_keras_compile_fit,
      custom_callbacks=custom_callbacks)

  if FLAGS.model_export_path:
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    model_saving_utils.export_bert_model(
        FLAGS.model_export_path,
        model=trained_model,
        restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
  return trained_model