def test_load_dataset_not_same_masks(self):
     max_seq_length = 128
     batch_size = 2
     input_path_1 = os.path.join(self.get_temp_dir(), 'train_3.tf_record')
     _create_fake_dataset(input_path_1,
                          seq_length=60,
                          num_masked_tokens=20,
                          max_seq_length=max_seq_length,
                          num_examples=batch_size)
     input_path_2 = os.path.join(self.get_temp_dir(), 'train_4.tf_record')
     _create_fake_dataset(input_path_2,
                          seq_length=60,
                          num_masked_tokens=15,
                          max_seq_length=max_seq_length,
                          num_examples=batch_size)
     input_paths = ','.join([input_path_1, input_path_2])
     data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig(
         is_training=False,
         input_path=input_paths,
         seq_bucket_lengths=[64, 128],
         use_position_id=True,
         global_batch_size=batch_size * 2)
     dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader(
         data_config).load()
     dataset_it = iter(dataset)
     with self.assertRaisesRegex(tf.errors.InvalidArgumentError,
                                 '.*Number of non padded mask tokens.*'):
         next(dataset_it)
 def test_load_dataset(self):
     tf.random.set_seed(0)
     max_seq_length = 128
     batch_size = 2
     input_path_1 = os.path.join(self.get_temp_dir(), 'train_1.tf_record')
     _create_fake_dataset(input_path_1,
                          seq_length=60,
                          num_masked_tokens=20,
                          max_seq_length=max_seq_length,
                          num_examples=batch_size)
     input_path_2 = os.path.join(self.get_temp_dir(), 'train_2.tf_record')
     _create_fake_dataset(input_path_2,
                          seq_length=100,
                          num_masked_tokens=70,
                          max_seq_length=max_seq_length,
                          num_examples=batch_size)
     input_paths = ','.join([input_path_1, input_path_2])
     data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig(
         is_training=False,
         input_path=input_paths,
         seq_bucket_lengths=[64, 128],
         use_position_id=True,
         global_batch_size=batch_size,
         deterministic=True)
     dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader(
         data_config).load()
     dataset_it = iter(dataset)
     features = next(dataset_it)
     self.assertCountEqual([
         'input_word_ids',
         'input_mask',
         'input_type_ids',
         'next_sentence_labels',
         'masked_lm_positions',
         'masked_lm_ids',
         'masked_lm_weights',
         'position_ids',
     ], features.keys())
     # Sequence length dimension should be bucketized and pad to 64.
     self.assertEqual(features['input_word_ids'].shape, (batch_size, 64))
     self.assertEqual(features['input_mask'].shape, (batch_size, 64))
     self.assertEqual(features['input_type_ids'].shape, (batch_size, 64))
     self.assertEqual(features['position_ids'].shape, (batch_size, 64))
     self.assertEqual(features['masked_lm_positions'].shape,
                      (batch_size, 20))
     features = next(dataset_it)
     self.assertEqual(features['input_word_ids'].shape, (batch_size, 128))
     self.assertEqual(features['input_mask'].shape, (batch_size, 128))
     self.assertEqual(features['input_type_ids'].shape, (batch_size, 128))
     self.assertEqual(features['position_ids'].shape, (batch_size, 128))
     self.assertEqual(features['masked_lm_positions'].shape,
                      (batch_size, 70))
    def test_distribution_strategy(self, distribution_strategy):
        max_seq_length = 128
        batch_size = 8
        input_path = os.path.join(self.get_temp_dir(), 'train.tf_record')
        _create_fake_dataset(input_path,
                             seq_length=60,
                             num_masked_tokens=20,
                             max_seq_length=max_seq_length,
                             num_examples=batch_size)
        data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig(
            is_training=False,
            input_path=input_path,
            seq_bucket_lengths=[64, 128],
            global_batch_size=batch_size)
        dataloader = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader(
            data_config)
        distributed_ds = orbit.utils.make_distributed_dataset(
            distribution_strategy, dataloader.load)
        train_iter = iter(distributed_ds)
        with distribution_strategy.scope():
            config = masked_lm.MaskedLMConfig(
                init_checkpoint=self.get_temp_dir(),
                model=bert.PretrainerConfig(
                    encoders.EncoderConfig(bert=encoders.BertEncoderConfig(
                        vocab_size=30522, num_layers=1)),
                    cls_heads=[
                        bert.ClsHeadConfig(inner_dim=10,
                                           num_classes=2,
                                           name='next_sentence')
                    ]),
                train_data=data_config)
            task = masked_lm.MaskedLMTask(config)
            model = task.build_model()
            metrics = task.build_metrics()

        @tf.function
        def step_fn(features):
            return task.validation_step(features, model, metrics=metrics)

        distributed_outputs = distribution_strategy.run(
            step_fn, args=(next(train_iter), ))
        local_results = tf.nest.map_structure(
            distribution_strategy.experimental_local_results,
            distributed_outputs)
        logging.info('Dynamic padding:  local_results= %s', str(local_results))
        dynamic_metrics = {}
        for metric in metrics:
            dynamic_metrics[metric.name] = metric.result()

        data_config = pretrain_dataloader.BertPretrainDataConfig(
            is_training=False,
            input_path=input_path,
            seq_length=max_seq_length,
            max_predictions_per_seq=20,
            global_batch_size=batch_size)
        dataloader = pretrain_dataloader.BertPretrainDataLoader(data_config)
        distributed_ds = orbit.utils.make_distributed_dataset(
            distribution_strategy, dataloader.load)
        train_iter = iter(distributed_ds)
        with distribution_strategy.scope():
            metrics = task.build_metrics()

        @tf.function
        def step_fn_b(features):
            return task.validation_step(features, model, metrics=metrics)

        distributed_outputs = distribution_strategy.run(
            step_fn_b, args=(next(train_iter), ))
        local_results = tf.nest.map_structure(
            distribution_strategy.experimental_local_results,
            distributed_outputs)
        logging.info('Static padding:  local_results= %s', str(local_results))
        static_metrics = {}
        for metric in metrics:
            static_metrics[metric.name] = metric.result()
        for key in static_metrics:
            # We need to investigate the differences on losses.
            if key != 'next_sentence_loss':
                self.assertEqual(dynamic_metrics[key], static_metrics[key])