Ejemplo n.º 1
0
    def test_serialize_deserialize(self):
        """Validate that the ELECTRA trainer can be serialized and deserialized."""
        # Build a transformer network to use within the BERT trainer. (Here, we use
        # a short sequence_length for convenience.)
        test_generator_network = networks.BertEncoder(vocab_size=100,
                                                      num_layers=4,
                                                      max_sequence_length=3)
        test_discriminator_network = networks.BertEncoder(
            vocab_size=100, num_layers=4, max_sequence_length=3)

        # Create a ELECTRA trainer with the created network. (Note that all the args
        # are different, so we can catch any serialization mismatches.)
        electra_trainer_model = electra_pretrainer.ElectraPretrainer(
            generator_network=test_generator_network,
            discriminator_network=test_discriminator_network,
            vocab_size=100,
            num_classes=2,
            sequence_length=3,
            num_token_predictions=2)

        # Create another BERT trainer via serialization and deserialization.
        config = electra_trainer_model.get_config()
        new_electra_trainer_model = electra_pretrainer.ElectraPretrainer.from_config(
            config)

        # Validate that the config can be forced to JSON.
        _ = new_electra_trainer_model.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(electra_trainer_model.get_config(),
                            new_electra_trainer_model.get_config())
Ejemplo n.º 2
0
    def test_electra_pretrainer(self):
        """Validate that the Keras object can be created."""
        # Build a transformer network to use within the ELECTRA trainer.
        vocab_size = 100
        sequence_length = 512
        test_generator_network = networks.TransformerEncoder(
            vocab_size=vocab_size,
            num_layers=2,
            max_sequence_length=sequence_length)
        test_discriminator_network = networks.TransformerEncoder(
            vocab_size=vocab_size,
            num_layers=2,
            max_sequence_length=sequence_length)

        # Create a ELECTRA trainer with the created network.
        num_classes = 3
        num_token_predictions = 2
        eletrca_trainer_model = electra_pretrainer.ElectraPretrainer(
            generator_network=test_generator_network,
            discriminator_network=test_discriminator_network,
            vocab_size=vocab_size,
            num_classes=num_classes,
            num_token_predictions=num_token_predictions,
            disallow_correct=True)

        # Create a set of 2-dimensional inputs (the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        lm_positions = tf.keras.Input(shape=(num_token_predictions, ),
                                      dtype=tf.int32)
        lm_ids = tf.keras.Input(shape=(num_token_predictions, ),
                                dtype=tf.int32)
        inputs = {
            'input_word_ids': word_ids,
            'input_mask': mask,
            'input_type_ids': type_ids,
            'masked_lm_positions': lm_positions,
            'masked_lm_ids': lm_ids
        }

        # Invoke the trainer model on the inputs. This causes the layer to be built.
        outputs = eletrca_trainer_model(inputs)
        lm_outs = outputs['lm_outputs']
        cls_outs = outputs['sentence_outputs']
        disc_logits = outputs['disc_logits']
        disc_label = outputs['disc_label']

        # Validate that the outputs are of the expected shape.
        expected_lm_shape = [None, num_token_predictions, vocab_size]
        expected_classification_shape = [None, num_classes]
        expected_disc_logits_shape = [None, sequence_length]
        expected_disc_label_shape = [None, sequence_length]
        self.assertAllEqual(expected_lm_shape, lm_outs.shape.as_list())
        self.assertAllEqual(expected_classification_shape,
                            cls_outs.shape.as_list())
        self.assertAllEqual(expected_disc_logits_shape,
                            disc_logits.shape.as_list())
        self.assertAllEqual(expected_disc_label_shape,
                            disc_label.shape.as_list())
Ejemplo n.º 3
0
def instantiate_pretrainer_from_cfg(
    config: ELECTRAPretrainerConfig,
    generator_network: Optional[tf.keras.Model] = None,
    discriminator_network: Optional[tf.keras.Model] = None,
    ) -> electra_pretrainer.ElectraPretrainer:
  """Instantiates ElectraPretrainer from the config."""
  generator_encoder_cfg = config.generator_encoder
  discriminator_encoder_cfg = config.discriminator_encoder
  if generator_network is None:
    generator_network = encoders.instantiate_encoder_from_cfg(
        generator_encoder_cfg)
  if discriminator_network is None:
    discriminator_network = encoders.instantiate_encoder_from_cfg(
        discriminator_encoder_cfg)
  return electra_pretrainer.ElectraPretrainer(
      generator_network=generator_network,
      discriminator_network=discriminator_network,
      vocab_size=config.generator_encoder.vocab_size,
      num_classes=config.num_classes,
      sequence_length=config.sequence_length,
      last_hidden_dim=config.generator_encoder.hidden_size,
      num_token_predictions=config.num_masked_tokens,
      mlm_activation=tf_utils.get_activation(
          generator_encoder_cfg.hidden_activation),
      mlm_initializer=tf.keras.initializers.TruncatedNormal(
          stddev=generator_encoder_cfg.initializer_range),
      classification_heads=instantiate_classification_heads_from_cfgs(
          config.cls_heads))
Ejemplo n.º 4
0
def instantiate_pretrainer_from_cfg(
    config: ELECTRAPretrainerConfig,
    generator_network: Optional[tf.keras.Model] = None,
    discriminator_network: Optional[tf.keras.Model] = None,
    ) -> electra_pretrainer.ElectraPretrainer:
  """Instantiates ElectraPretrainer from the config."""
  generator_encoder_cfg = config.generator_encoder
  discriminator_encoder_cfg = config.discriminator_encoder
  # Copy discriminator's embeddings to generator for easier model serialization.
  if discriminator_network is None:
    discriminator_network = encoders.instantiate_encoder_from_cfg(
        discriminator_encoder_cfg)
  if generator_network is None:
    if config.tie_embeddings:
      embedding_layer = discriminator_network.get_embedding_layer()
      generator_network = encoders.instantiate_encoder_from_cfg(
          generator_encoder_cfg, embedding_layer=embedding_layer)
    else:
      generator_network = encoders.instantiate_encoder_from_cfg(
          generator_encoder_cfg)

  return electra_pretrainer.ElectraPretrainer(
      generator_network=generator_network,
      discriminator_network=discriminator_network,
      vocab_size=config.generator_encoder.vocab_size,
      num_classes=config.num_classes,
      sequence_length=config.sequence_length,
      num_token_predictions=config.num_masked_tokens,
      mlm_activation=tf_utils.get_activation(
          generator_encoder_cfg.hidden_activation),
      mlm_initializer=tf.keras.initializers.TruncatedNormal(
          stddev=generator_encoder_cfg.initializer_range),
      classification_heads=instantiate_classification_heads_from_cfgs(
          config.cls_heads),
      disallow_correct=config.disallow_correct)
Ejemplo n.º 5
0
    def test_electra_trainer_tensor_call(self):
        """Validate that the Keras object can be invoked."""
        # Build a transformer network to use within the ELECTRA trainer. (Here, we
        # use a short sequence_length for convenience.)
        test_generator_network = networks.BertEncoder(vocab_size=100,
                                                      num_layers=4,
                                                      max_sequence_length=3,
                                                      dict_outputs=True)
        test_discriminator_network = networks.BertEncoder(
            vocab_size=100,
            num_layers=4,
            max_sequence_length=3,
            dict_outputs=True)

        # Create a ELECTRA trainer with the created network.
        eletrca_trainer_model = electra_pretrainer.ElectraPretrainer(
            generator_network=test_generator_network,
            discriminator_network=test_discriminator_network,
            vocab_size=100,
            num_classes=2,
            sequence_length=3,
            num_token_predictions=2)

        # Create a set of 2-dimensional data tensors to feed into the model.
        word_ids = tf.constant([[1, 1, 1], [2, 2, 2]], dtype=tf.int32)
        mask = tf.constant([[1, 1, 1], [1, 0, 0]], dtype=tf.int32)
        type_ids = tf.constant([[1, 1, 1], [2, 2, 2]], dtype=tf.int32)
        lm_positions = tf.constant([[0, 1], [0, 2]], dtype=tf.int32)
        lm_ids = tf.constant([[10, 20], [20, 30]], dtype=tf.int32)
        inputs = {
            'input_word_ids': word_ids,
            'input_mask': mask,
            'input_type_ids': type_ids,
            'masked_lm_positions': lm_positions,
            'masked_lm_ids': lm_ids
        }

        # Invoke the trainer model on the tensors. In Eager mode, this does the
        # actual calculation. (We can't validate the outputs, since the network is
        # too complex: this simply ensures we're not hitting runtime errors.)
        _ = eletrca_trainer_model(inputs)