Ejemplo n.º 1
0
  def test_serialize_deserialize(self):
    """Validate the network can be serialized and deserialized."""
    num_classes = 3
    backbone = backbones.UNet3D(model_id=4)
    decoder = decoders.UNet3DDecoder(
        model_id=4, input_specs=backbone.output_specs)
    head = segmentation_heads_3d.SegmentationHead3D(
        num_classes, level=1, num_convs=0)
    model = segmentation_model.SegmentationModel(
        backbone=backbone, decoder=decoder, head=head)

    config = model.get_config()
    new_model = segmentation_model.SegmentationModel.from_config(config)

    # Validate that the config can be forced to JSON.
    _ = new_model.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(model.get_config(), new_model.get_config())
Ejemplo n.º 2
0
  def test_segmentation_network_unet3d_creation(self, input_size, depth):
    """Test for creation of a segmentation network."""
    num_classes = 2
    inputs = np.random.rand(2, input_size[0], input_size[0], input_size[1], 3)
    tf.keras.backend.set_image_data_format('channels_last')
    backbone = backbones.UNet3D(model_id=depth)

    decoder = decoders.UNet3DDecoder(
        model_id=depth, input_specs=backbone.output_specs)
    head = segmentation_heads_3d.SegmentationHead3D(
        num_classes, level=1, num_convs=0)

    model = segmentation_model.SegmentationModel(
        backbone=backbone, decoder=decoder, head=head)

    outputs = model(inputs)
    self.assertAllEqual(
        [2, input_size[0], input_size[0], input_size[1], num_classes],
        outputs['logits'].numpy().shape)