Ejemplo n.º 1
0
    def __init__(self,
                 annotation_file,
                 include_mask,
                 need_rescale_bboxes=True,
                 per_category_metrics=False):
        """Constructs COCO evaluation class.

    The class provides the interface to COCO metrics_fn. The
    _update_op() takes detections from each image and push them to
    self.detections. The _evaluate() loads a JSON file in COCO annotation format
    as the groundtruths and runs COCO evaluation.

    Args:
      annotation_file: a JSON file that stores annotations of the eval dataset.
        If `annotation_file` is None, groundtruth annotations will be loaded
        from the dataloader.
      include_mask: a boolean to indicate whether or not to include the mask
        eval.
      need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
        to absolute values (`image_info` is needed in this case).
      per_category_metrics: Whether to return per category metrics.
    """
        if annotation_file:
            if annotation_file.startswith('gs://'):
                _, local_val_json = tempfile.mkstemp(suffix='.json')
                tf.io.gfile.remove(local_val_json)

                tf.io.gfile.copy(annotation_file, local_val_json)
                atexit.register(tf.io.gfile.remove, local_val_json)
            else:
                local_val_json = annotation_file
            self._coco_gt = coco_utils.COCOWrapper(
                eval_type=('mask' if include_mask else 'box'),
                annotation_file=local_val_json)
        self._annotation_file = annotation_file
        self._include_mask = include_mask
        self._per_category_metrics = per_category_metrics
        self._metric_names = [
            'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10',
            'ARmax100', 'ARs', 'ARm', 'ARl'
        ]
        self._required_prediction_fields = [
            'source_id', 'num_detections', 'detection_classes',
            'detection_scores', 'detection_boxes'
        ]
        self._need_rescale_bboxes = need_rescale_bboxes
        if self._need_rescale_bboxes:
            self._required_prediction_fields.append('image_info')
        self._required_groundtruth_fields = [
            'source_id', 'height', 'width', 'classes', 'boxes'
        ]
        if self._include_mask:
            mask_metric_names = ['mask_' + x for x in self._metric_names]
            self._metric_names.extend(mask_metric_names)
            self._required_prediction_fields.extend(['detection_masks'])
            self._required_groundtruth_fields.extend(['masks'])

        self.reset_states()
Ejemplo n.º 2
0
    def evaluate(self):
        """Evaluates with detections from all images with COCO API.

    Returns:
      coco_metric: float numpy array with shape [24] representing the
        coco-style evaluation metrics (box and mask).
    """
        if not self._annotation_file:
            logging.info('There is no annotation_file in COCOEvaluator.')
            gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
                self._groundtruths)
            coco_gt = coco_utils.COCOWrapper(
                eval_type=('mask' if self._include_mask else 'box'),
                gt_dataset=gt_dataset)
        else:
            logging.info('Using annotation file: %s', self._annotation_file)
            coco_gt = self._coco_gt
        coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
            self._predictions)
        coco_dt = coco_gt.loadRes(predictions=coco_predictions)
        image_ids = [ann['image_id'] for ann in coco_predictions]

        coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
        coco_eval.params.imgIds = image_ids
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()
        coco_metrics = coco_eval.stats

        if self._include_mask:
            mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
            mcoco_eval.params.imgIds = image_ids
            mcoco_eval.evaluate()
            mcoco_eval.accumulate()
            mcoco_eval.summarize()
            mask_coco_metrics = mcoco_eval.stats

        if self._include_mask:
            metrics = np.hstack((coco_metrics, mask_coco_metrics))
        else:
            metrics = coco_metrics

        metrics_dict = {}
        for i, name in enumerate(self._metric_names):
            metrics_dict[name] = metrics[i].astype(np.float32)

        # Adds metrics per category.
        if self._per_category_metrics:
            metrics_dict.update(self._retrieve_per_category_metrics(coco_eval))

            if self._include_mask:
                metrics_dict.update(
                    self._retrieve_per_category_metrics(mcoco_eval,
                                                        prefix='mask'))

        return metrics_dict
Ejemplo n.º 3
0
    def evaluate(self):
        """Evaluates with detections from all images with COCO API.

    Returns:
      coco_metric: float numpy array with shape [24] representing the
        coco-style evaluation metrics (box and mask).
    """
        if not self._annotation_file:
            logging.info('There is no annotation_file in COCOEvaluator.')
            gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
                self._groundtruths)
            coco_gt = coco_utils.COCOWrapper(
                eval_type=('mask' if self._include_mask else 'box'),
                gt_dataset=gt_dataset)
        else:
            logging.info('Using annotation file: %s', self._annotation_file)
            coco_gt = self._coco_gt
        coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
            self._predictions)
        coco_dt = coco_gt.loadRes(predictions=coco_predictions)
        image_ids = [ann['image_id'] for ann in coco_predictions]

        coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
        coco_eval.params.imgIds = image_ids
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()
        coco_metrics = coco_eval.stats

        if self._include_mask:
            mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
            mcoco_eval.params.imgIds = image_ids
            mcoco_eval.evaluate()
            mcoco_eval.accumulate()
            mcoco_eval.summarize()
            mask_coco_metrics = mcoco_eval.stats

        if self._include_mask:
            metrics = np.hstack((coco_metrics, mask_coco_metrics))
        else:
            metrics = coco_metrics

        metrics_dict = {}
        for i, name in enumerate(self._metric_names):
            metrics_dict[name] = metrics[i].astype(np.float32)

        # Adds metrics per category.
        if self._per_category_metrics and hasattr(coco_eval, 'category_stats'):
            for category_index, category_id in enumerate(
                    coco_eval.params.catIds):
                metrics_dict['Precision mAP ByCategory/{}'.format(
                    category_id
                )] = coco_eval.category_stats[0][category_index].astype(
                    np.float32)
                metrics_dict['Precision mAP ByCategory@50IoU/{}'.format(
                    category_id
                )] = coco_eval.category_stats[1][category_index].astype(
                    np.float32)
                metrics_dict['Precision mAP ByCategory@75IoU/{}'.format(
                    category_id
                )] = coco_eval.category_stats[2][category_index].astype(
                    np.float32)
                metrics_dict['Precision mAP ByCategory (small) /{}'.format(
                    category_id
                )] = coco_eval.category_stats[3][category_index].astype(
                    np.float32)
                metrics_dict['Precision mAP ByCategory (medium) /{}'.format(
                    category_id
                )] = coco_eval.category_stats[4][category_index].astype(
                    np.float32)
                metrics_dict['Precision mAP ByCategory (large) /{}'.format(
                    category_id
                )] = coco_eval.category_stats[5][category_index].astype(
                    np.float32)
                metrics_dict['Recall AR@1 ByCategory/{}'.format(
                    category_id
                )] = coco_eval.category_stats[6][category_index].astype(
                    np.float32)
                metrics_dict['Recall AR@10 ByCategory/{}'.format(
                    category_id
                )] = coco_eval.category_stats[7][category_index].astype(
                    np.float32)
                metrics_dict['Recall AR@100 ByCategory/{}'.format(
                    category_id
                )] = coco_eval.category_stats[8][category_index].astype(
                    np.float32)
                metrics_dict['Recall AR (small) ByCategory/{}'.format(
                    category_id
                )] = coco_eval.category_stats[9][category_index].astype(
                    np.float32)
                metrics_dict['Recall AR (medium) ByCategory/{}'.format(
                    category_id
                )] = coco_eval.category_stats[10][category_index].astype(
                    np.float32)
                metrics_dict['Recall AR (large) ByCategory/{}'.format(
                    category_id
                )] = coco_eval.category_stats[11][category_index].astype(
                    np.float32)
        return metrics_dict