def test_checkpoint(self, include_mask):
        input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, 3])
        backbone = resnet.ResNet(model_id=50, input_specs=input_specs)
        decoder = fpn.FPN(min_level=3,
                          max_level=7,
                          input_specs=backbone.output_specs)
        rpn_head = dense_prediction_heads.RPNHead(min_level=3,
                                                  max_level=7,
                                                  num_anchors_per_location=3)
        detection_head = instance_heads.DetectionHead(num_classes=2)
        roi_generator_obj = roi_generator.MultilevelROIGenerator()
        roi_sampler_obj = roi_sampler.ROISampler()
        roi_aligner_obj = roi_aligner.MultilevelROIAligner()
        detection_generator_obj = detection_generator.DetectionGenerator()
        if include_mask:
            mask_head = instance_heads.MaskHead(num_classes=2,
                                                upsample_factor=2)
            mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                        num_sampled_masks=1)
            mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
                crop_size=14)
        else:
            mask_head = None
            mask_sampler_obj = None
            mask_roi_aligner_obj = None
        model = maskrcnn_model.MaskRCNNModel(backbone, decoder, rpn_head,
                                             detection_head, roi_generator_obj,
                                             roi_sampler_obj, roi_aligner_obj,
                                             detection_generator_obj,
                                             mask_head, mask_sampler_obj,
                                             mask_roi_aligner_obj)
        expect_checkpoint_items = dict(backbone=backbone,
                                       decoder=decoder,
                                       rpn_head=rpn_head,
                                       detection_head=detection_head)
        if include_mask:
            expect_checkpoint_items['mask_head'] = mask_head
        self.assertAllEqual(expect_checkpoint_items, model.checkpoint_items)

        # Test save and load checkpoints.
        ckpt = tf.train.Checkpoint(model=model, **model.checkpoint_items)
        save_dir = self.create_tempdir().full_path
        ckpt.save(os.path.join(save_dir, 'ckpt'))

        partial_ckpt = tf.train.Checkpoint(backbone=backbone)
        partial_ckpt.restore(tf.train.latest_checkpoint(
            save_dir)).expect_partial().assert_existing_objects_matched()

        if include_mask:
            partial_ckpt_mask = tf.train.Checkpoint(backbone=backbone,
                                                    mask_head=mask_head)
            partial_ckpt_mask.restore(tf.train.latest_checkpoint(
                save_dir)).expect_partial().assert_existing_objects_matched()
Ejemplo n.º 2
0
    def testDetectionsOutputShape(self, nms_version, use_cpu_nms,
                                  soft_nms_sigma):
        max_num_detections = 10
        num_classes = 4
        pre_nms_top_k = 5000
        pre_nms_score_threshold = 0.01
        batch_size = 1
        kwargs = {
            'apply_nms': True,
            'pre_nms_top_k': pre_nms_top_k,
            'pre_nms_score_threshold': pre_nms_score_threshold,
            'nms_iou_threshold': 0.5,
            'max_num_detections': max_num_detections,
            'nms_version': nms_version,
            'use_cpu_nms': use_cpu_nms,
            'soft_nms_sigma': soft_nms_sigma,
        }
        generator = detection_generator.DetectionGenerator(**kwargs)

        cls_outputs_all = (np.random.rand(84, num_classes) -
                           0.5) * 3  # random 84x3 outputs.
        box_outputs_all = np.random.rand(84,
                                         4 * num_classes)  # random 84 boxes.
        anchor_boxes_all = np.random.rand(84, 4)  # random 84 boxes.
        class_outputs = tf.reshape(
            tf.convert_to_tensor(cls_outputs_all, dtype=tf.float32),
            [1, 84, num_classes])
        box_outputs = tf.reshape(
            tf.convert_to_tensor(box_outputs_all, dtype=tf.float32),
            [1, 84, 4 * num_classes])
        anchor_boxes = tf.reshape(
            tf.convert_to_tensor(anchor_boxes_all, dtype=tf.float32),
            [1, 84, 4])
        image_info = tf.constant(
            [[[1000, 1000], [100, 100], [0.1, 0.1], [0, 0]]], dtype=tf.float32)
        results = generator(box_outputs, class_outputs, anchor_boxes,
                            image_info[:, 1, :])
        boxes = results['detection_boxes']
        classes = results['detection_classes']
        scores = results['detection_scores']
        valid_detections = results['num_detections']

        self.assertEqual(boxes.numpy().shape,
                         (batch_size, max_num_detections, 4))
        self.assertEqual(scores.numpy().shape, (
            batch_size,
            max_num_detections,
        ))
        self.assertEqual(classes.numpy().shape, (
            batch_size,
            max_num_detections,
        ))
        self.assertEqual(valid_detections.numpy().shape, (batch_size, ))
Ejemplo n.º 3
0
    def test_serialize_deserialize(self, include_mask):
        input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, 3])
        backbone = resnet.ResNet(model_id=50, input_specs=input_specs)
        decoder = fpn.FPN(min_level=3,
                          max_level=7,
                          input_specs=backbone.output_specs)
        rpn_head = dense_prediction_heads.RPNHead(min_level=3,
                                                  max_level=7,
                                                  num_anchors_per_location=3)
        detection_head = instance_heads.DetectionHead(num_classes=2)
        roi_generator_obj = roi_generator.MultilevelROIGenerator()
        roi_sampler_obj = roi_sampler.ROISampler()
        roi_aligner_obj = roi_aligner.MultilevelROIAligner()
        detection_generator_obj = detection_generator.DetectionGenerator()
        if include_mask:
            mask_head = instance_heads.MaskHead(num_classes=2,
                                                upsample_factor=2)
            mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                        num_sampled_masks=1)
            mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
                crop_size=14)
        else:
            mask_head = None
            mask_sampler_obj = None
            mask_roi_aligner_obj = None
        model = maskrcnn_model.MaskRCNNModel(backbone,
                                             decoder,
                                             rpn_head,
                                             detection_head,
                                             roi_generator_obj,
                                             roi_sampler_obj,
                                             roi_aligner_obj,
                                             detection_generator_obj,
                                             mask_head,
                                             mask_sampler_obj,
                                             mask_roi_aligner_obj,
                                             min_level=3,
                                             max_level=7,
                                             num_scales=3,
                                             aspect_ratios=[1.0],
                                             anchor_size=3)

        config = model.get_config()
        new_model = maskrcnn_model.MaskRCNNModel.from_config(config)

        # Validate that the config can be forced to JSON.
        _ = new_model.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(model.get_config(), new_model.get_config())
Ejemplo n.º 4
0
def construct_model_and_anchors(image_size, use_gt_boxes_for_masks):
    num_classes = 3
    min_level = 3
    max_level = 4
    num_scales = 3
    aspect_ratios = [1.0]

    anchor_boxes = anchor.Anchor(min_level=min_level,
                                 max_level=max_level,
                                 num_scales=num_scales,
                                 aspect_ratios=aspect_ratios,
                                 anchor_size=3,
                                 image_size=image_size).multilevel_boxes
    num_anchors_per_location = len(aspect_ratios) * num_scales

    input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, 3])
    backbone = resnet.ResNet(model_id=50, input_specs=input_specs)
    decoder = fpn.FPN(min_level=min_level,
                      max_level=max_level,
                      input_specs=backbone.output_specs)
    rpn_head = dense_prediction_heads.RPNHead(
        min_level=min_level,
        max_level=max_level,
        num_anchors_per_location=num_anchors_per_location)
    detection_head = instance_heads.DetectionHead(num_classes=num_classes)
    roi_generator_obj = roi_generator.MultilevelROIGenerator()
    roi_sampler_obj = roi_sampler.ROISampler()
    roi_aligner_obj = roi_aligner.MultilevelROIAligner()
    detection_generator_obj = detection_generator.DetectionGenerator()
    mask_head = deep_instance_heads.DeepMaskHead(num_classes=num_classes,
                                                 upsample_factor=2)
    mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                num_sampled_masks=1)
    mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(crop_size=14)

    model = maskrcnn_model.DeepMaskRCNNModel(
        backbone,
        decoder,
        rpn_head,
        detection_head,
        roi_generator_obj,
        roi_sampler_obj,
        roi_aligner_obj,
        detection_generator_obj,
        mask_head,
        mask_sampler_obj,
        mask_roi_aligner_obj,
        use_gt_boxes_for_masks=use_gt_boxes_for_masks)

    return model, anchor_boxes
Ejemplo n.º 5
0
    def test_serialize_deserialize(self):
        kwargs = {
            'apply_nms': True,
            'pre_nms_top_k': 1000,
            'pre_nms_score_threshold': 0.1,
            'nms_iou_threshold': 0.5,
            'max_num_detections': 10,
            'use_batched_nms': False,
        }
        generator = detection_generator.DetectionGenerator(**kwargs)

        expected_config = dict(kwargs)
        self.assertEqual(generator.get_config(), expected_config)

        new_generator = (detection_generator.DetectionGenerator.from_config(
            generator.get_config()))

        self.assertAllEqual(generator.get_config(), new_generator.get_config())
def build_maskrcnn(
    input_specs: tf.keras.layers.InputSpec,
    model_config: maskrcnn_cfg.MaskRCNN,
    l2_regularizer: tf.keras.regularizers.Regularizer = None
) -> tf.keras.Model:
    """Builds Mask R-CNN model."""
    norm_activation_config = model_config.norm_activation
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)

    decoder = decoder_factory.build_decoder(input_specs=backbone.output_specs,
                                            model_config=model_config,
                                            l2_regularizer=l2_regularizer)

    rpn_head_config = model_config.rpn_head
    roi_generator_config = model_config.roi_generator
    roi_sampler_config = model_config.roi_sampler
    roi_aligner_config = model_config.roi_aligner
    detection_head_config = model_config.detection_head
    generator_config = model_config.detection_generator
    num_anchors_per_location = (len(model_config.anchor.aspect_ratios) *
                                model_config.anchor.num_scales)

    rpn_head = dense_prediction_heads.RPNHead(
        min_level=model_config.min_level,
        max_level=model_config.max_level,
        num_anchors_per_location=num_anchors_per_location,
        num_convs=rpn_head_config.num_convs,
        num_filters=rpn_head_config.num_filters,
        use_separable_conv=rpn_head_config.use_separable_conv,
        activation=norm_activation_config.activation,
        use_sync_bn=norm_activation_config.use_sync_bn,
        norm_momentum=norm_activation_config.norm_momentum,
        norm_epsilon=norm_activation_config.norm_epsilon,
        kernel_regularizer=l2_regularizer)

    detection_head = instance_heads.DetectionHead(
        num_classes=model_config.num_classes,
        num_convs=detection_head_config.num_convs,
        num_filters=detection_head_config.num_filters,
        use_separable_conv=detection_head_config.use_separable_conv,
        num_fcs=detection_head_config.num_fcs,
        fc_dims=detection_head_config.fc_dims,
        class_agnostic_bbox_pred=detection_head_config.
        class_agnostic_bbox_pred,
        activation=norm_activation_config.activation,
        use_sync_bn=norm_activation_config.use_sync_bn,
        norm_momentum=norm_activation_config.norm_momentum,
        norm_epsilon=norm_activation_config.norm_epsilon,
        kernel_regularizer=l2_regularizer,
        name='detection_head')
    if roi_sampler_config.cascade_iou_thresholds:
        detection_head_cascade = [detection_head]
        for cascade_num in range(len(
                roi_sampler_config.cascade_iou_thresholds)):
            detection_head = instance_heads.DetectionHead(
                num_classes=model_config.num_classes,
                num_convs=detection_head_config.num_convs,
                num_filters=detection_head_config.num_filters,
                use_separable_conv=detection_head_config.use_separable_conv,
                num_fcs=detection_head_config.num_fcs,
                fc_dims=detection_head_config.fc_dims,
                class_agnostic_bbox_pred=detection_head_config.
                class_agnostic_bbox_pred,
                activation=norm_activation_config.activation,
                use_sync_bn=norm_activation_config.use_sync_bn,
                norm_momentum=norm_activation_config.norm_momentum,
                norm_epsilon=norm_activation_config.norm_epsilon,
                kernel_regularizer=l2_regularizer,
                name='detection_head_{}'.format(cascade_num + 1))
            detection_head_cascade.append(detection_head)
        detection_head = detection_head_cascade

    roi_generator_obj = roi_generator.MultilevelROIGenerator(
        pre_nms_top_k=roi_generator_config.pre_nms_top_k,
        pre_nms_score_threshold=roi_generator_config.pre_nms_score_threshold,
        pre_nms_min_size_threshold=(
            roi_generator_config.pre_nms_min_size_threshold),
        nms_iou_threshold=roi_generator_config.nms_iou_threshold,
        num_proposals=roi_generator_config.num_proposals,
        test_pre_nms_top_k=roi_generator_config.test_pre_nms_top_k,
        test_pre_nms_score_threshold=(
            roi_generator_config.test_pre_nms_score_threshold),
        test_pre_nms_min_size_threshold=(
            roi_generator_config.test_pre_nms_min_size_threshold),
        test_nms_iou_threshold=roi_generator_config.test_nms_iou_threshold,
        test_num_proposals=roi_generator_config.test_num_proposals,
        use_batched_nms=roi_generator_config.use_batched_nms)

    roi_sampler_cascade = []
    roi_sampler_obj = roi_sampler.ROISampler(
        mix_gt_boxes=roi_sampler_config.mix_gt_boxes,
        num_sampled_rois=roi_sampler_config.num_sampled_rois,
        foreground_fraction=roi_sampler_config.foreground_fraction,
        foreground_iou_threshold=roi_sampler_config.foreground_iou_threshold,
        background_iou_high_threshold=(
            roi_sampler_config.background_iou_high_threshold),
        background_iou_low_threshold=(
            roi_sampler_config.background_iou_low_threshold))
    roi_sampler_cascade.append(roi_sampler_obj)
    # Initialize addtional roi simplers for cascade heads.
    if roi_sampler_config.cascade_iou_thresholds:
        for iou in roi_sampler_config.cascade_iou_thresholds:
            roi_sampler_obj = roi_sampler.ROISampler(
                mix_gt_boxes=False,
                num_sampled_rois=roi_sampler_config.num_sampled_rois,
                foreground_iou_threshold=iou,
                background_iou_high_threshold=iou,
                background_iou_low_threshold=0.0,
                skip_subsampling=True)
            roi_sampler_cascade.append(roi_sampler_obj)

    roi_aligner_obj = roi_aligner.MultilevelROIAligner(
        crop_size=roi_aligner_config.crop_size,
        sample_offset=roi_aligner_config.sample_offset)

    detection_generator_obj = detection_generator.DetectionGenerator(
        apply_nms=generator_config.apply_nms,
        pre_nms_top_k=generator_config.pre_nms_top_k,
        pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
        nms_iou_threshold=generator_config.nms_iou_threshold,
        max_num_detections=generator_config.max_num_detections,
        use_batched_nms=generator_config.use_batched_nms)

    if model_config.include_mask:
        mask_head = instance_heads.MaskHead(
            num_classes=model_config.num_classes,
            upsample_factor=model_config.mask_head.upsample_factor,
            num_convs=model_config.mask_head.num_convs,
            num_filters=model_config.mask_head.num_filters,
            use_separable_conv=model_config.mask_head.use_separable_conv,
            activation=model_config.norm_activation.activation,
            norm_momentum=model_config.norm_activation.norm_momentum,
            norm_epsilon=model_config.norm_activation.norm_epsilon,
            kernel_regularizer=l2_regularizer,
            class_agnostic=model_config.mask_head.class_agnostic)

        mask_sampler_obj = mask_sampler.MaskSampler(
            mask_target_size=(model_config.mask_roi_aligner.crop_size *
                              model_config.mask_head.upsample_factor),
            num_sampled_masks=model_config.mask_sampler.num_sampled_masks)

        mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
            crop_size=model_config.mask_roi_aligner.crop_size,
            sample_offset=model_config.mask_roi_aligner.sample_offset)
    else:
        mask_head = None
        mask_sampler_obj = None
        mask_roi_aligner_obj = None

    model = maskrcnn_model.MaskRCNNModel(
        backbone=backbone,
        decoder=decoder,
        rpn_head=rpn_head,
        detection_head=detection_head,
        roi_generator=roi_generator_obj,
        roi_sampler=roi_sampler_cascade,
        roi_aligner=roi_aligner_obj,
        detection_generator=detection_generator_obj,
        mask_head=mask_head,
        mask_sampler=mask_sampler_obj,
        mask_roi_aligner=mask_roi_aligner_obj,
        class_agnostic_bbox_pred=detection_head_config.
        class_agnostic_bbox_pred,
        cascade_class_ensemble=detection_head_config.cascade_class_ensemble,
        min_level=model_config.min_level,
        max_level=model_config.max_level,
        num_scales=model_config.anchor.num_scales,
        aspect_ratios=model_config.anchor.aspect_ratios,
        anchor_size=model_config.anchor.anchor_size)
    return model
Ejemplo n.º 7
0
    def test_build_model(self, include_mask, use_separable_conv,
                         build_anchor_boxes, is_training):
        num_classes = 3
        min_level = 3
        max_level = 7
        num_scales = 3
        aspect_ratios = [1.0]
        anchor_size = 3
        resnet_model_id = 50
        num_anchors_per_location = num_scales * len(aspect_ratios)
        image_size = 384
        images = np.random.rand(2, image_size, image_size, 3)
        image_shape = np.array([[image_size, image_size],
                                [image_size, image_size]])

        if build_anchor_boxes:
            anchor_boxes = anchor.Anchor(
                min_level=min_level,
                max_level=max_level,
                num_scales=num_scales,
                aspect_ratios=aspect_ratios,
                anchor_size=3,
                image_size=(image_size, image_size)).multilevel_boxes
            for l in anchor_boxes:
                anchor_boxes[l] = tf.tile(
                    tf.expand_dims(anchor_boxes[l], axis=0), [2, 1, 1, 1])
        else:
            anchor_boxes = None

        backbone = resnet.ResNet(model_id=resnet_model_id)
        decoder = fpn.FPN(input_specs=backbone.output_specs,
                          min_level=min_level,
                          max_level=max_level,
                          use_separable_conv=use_separable_conv)
        rpn_head = dense_prediction_heads.RPNHead(
            min_level=min_level,
            max_level=max_level,
            num_anchors_per_location=num_anchors_per_location,
            num_convs=1)
        detection_head = instance_heads.DetectionHead(num_classes=num_classes)
        roi_generator_obj = roi_generator.MultilevelROIGenerator()
        roi_sampler_obj = roi_sampler.ROISampler()
        roi_aligner_obj = roi_aligner.MultilevelROIAligner()
        detection_generator_obj = detection_generator.DetectionGenerator()
        if include_mask:
            mask_head = instance_heads.MaskHead(num_classes=num_classes,
                                                upsample_factor=2)
            mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                        num_sampled_masks=1)
            mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
                crop_size=14)
        else:
            mask_head = None
            mask_sampler_obj = None
            mask_roi_aligner_obj = None
        model = maskrcnn_model.MaskRCNNModel(backbone,
                                             decoder,
                                             rpn_head,
                                             detection_head,
                                             roi_generator_obj,
                                             roi_sampler_obj,
                                             roi_aligner_obj,
                                             detection_generator_obj,
                                             mask_head,
                                             mask_sampler_obj,
                                             mask_roi_aligner_obj,
                                             min_level=min_level,
                                             max_level=max_level,
                                             num_scales=num_scales,
                                             aspect_ratios=aspect_ratios,
                                             anchor_size=anchor_size)

        gt_boxes = np.array(
            [[[10, 10, 15, 15], [2.5, 2.5, 7.5, 7.5], [-1, -1, -1, -1]],
             [[100, 100, 150, 150], [-1, -1, -1, -1], [-1, -1, -1, -1]]],
            dtype=np.float32)
        gt_classes = np.array([[2, 1, -1], [1, -1, -1]], dtype=np.int32)
        if include_mask:
            gt_masks = np.ones((2, 3, 100, 100))
        else:
            gt_masks = None

        # Results will be checked in test_forward.
        _ = model(images,
                  image_shape,
                  anchor_boxes,
                  gt_boxes,
                  gt_classes,
                  gt_masks,
                  training=is_training)
Ejemplo n.º 8
0
    def test_forward(self, strategy, include_mask, build_anchor_boxes,
                     training, use_cascade_heads):
        num_classes = 3
        min_level = 3
        max_level = 4
        num_scales = 3
        aspect_ratios = [1.0]
        anchor_size = 3
        if use_cascade_heads:
            cascade_iou_thresholds = [0.6]
            class_agnostic_bbox_pred = True
            cascade_class_ensemble = True
        else:
            cascade_iou_thresholds = None
            class_agnostic_bbox_pred = False
            cascade_class_ensemble = False

        image_size = (256, 256)
        images = np.random.rand(2, image_size[0], image_size[1], 3)
        image_shape = np.array([[224, 100], [100, 224]])
        with strategy.scope():
            if build_anchor_boxes:
                anchor_boxes = anchor.Anchor(
                    min_level=min_level,
                    max_level=max_level,
                    num_scales=num_scales,
                    aspect_ratios=aspect_ratios,
                    anchor_size=anchor_size,
                    image_size=image_size).multilevel_boxes
            else:
                anchor_boxes = None
            num_anchors_per_location = len(aspect_ratios) * num_scales

            input_specs = tf.keras.layers.InputSpec(
                shape=[None, None, None, 3])
            backbone = resnet.ResNet(model_id=50, input_specs=input_specs)
            decoder = fpn.FPN(min_level=min_level,
                              max_level=max_level,
                              input_specs=backbone.output_specs)
            rpn_head = dense_prediction_heads.RPNHead(
                min_level=min_level,
                max_level=max_level,
                num_anchors_per_location=num_anchors_per_location)
            detection_head = instance_heads.DetectionHead(
                num_classes=num_classes,
                class_agnostic_bbox_pred=class_agnostic_bbox_pred)
            roi_generator_obj = roi_generator.MultilevelROIGenerator()

            roi_sampler_cascade = []
            roi_sampler_obj = roi_sampler.ROISampler()
            roi_sampler_cascade.append(roi_sampler_obj)
            if cascade_iou_thresholds:
                for iou in cascade_iou_thresholds:
                    roi_sampler_obj = roi_sampler.ROISampler(
                        mix_gt_boxes=False,
                        foreground_iou_threshold=iou,
                        background_iou_high_threshold=iou,
                        background_iou_low_threshold=0.0,
                        skip_subsampling=True)
                    roi_sampler_cascade.append(roi_sampler_obj)
            roi_aligner_obj = roi_aligner.MultilevelROIAligner()
            detection_generator_obj = detection_generator.DetectionGenerator()
            if include_mask:
                mask_head = instance_heads.MaskHead(num_classes=num_classes,
                                                    upsample_factor=2)
                mask_sampler_obj = mask_sampler.MaskSampler(
                    mask_target_size=28, num_sampled_masks=1)
                mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
                    crop_size=14)
            else:
                mask_head = None
                mask_sampler_obj = None
                mask_roi_aligner_obj = None
            model = maskrcnn_model.MaskRCNNModel(
                backbone,
                decoder,
                rpn_head,
                detection_head,
                roi_generator_obj,
                roi_sampler_obj,
                roi_aligner_obj,
                detection_generator_obj,
                mask_head,
                mask_sampler_obj,
                mask_roi_aligner_obj,
                class_agnostic_bbox_pred=class_agnostic_bbox_pred,
                cascade_class_ensemble=cascade_class_ensemble,
                min_level=min_level,
                max_level=max_level,
                num_scales=num_scales,
                aspect_ratios=aspect_ratios,
                anchor_size=anchor_size)

            gt_boxes = np.array(
                [[[10, 10, 15, 15], [2.5, 2.5, 7.5, 7.5], [-1, -1, -1, -1]],
                 [[100, 100, 150, 150], [-1, -1, -1, -1], [-1, -1, -1, -1]]],
                dtype=np.float32)
            gt_classes = np.array([[2, 1, -1], [1, -1, -1]], dtype=np.int32)
            if include_mask:
                gt_masks = np.ones((2, 3, 100, 100))
            else:
                gt_masks = None

            results = model(images,
                            image_shape,
                            anchor_boxes,
                            gt_boxes,
                            gt_classes,
                            gt_masks,
                            training=training)

        self.assertIn('rpn_boxes', results)
        self.assertIn('rpn_scores', results)
        if training:
            self.assertIn('class_targets', results)
            self.assertIn('box_targets', results)
            self.assertIn('class_outputs', results)
            self.assertIn('box_outputs', results)
            if include_mask:
                self.assertIn('mask_outputs', results)
        else:
            self.assertIn('detection_boxes', results)
            self.assertIn('detection_scores', results)
            self.assertIn('detection_classes', results)
            self.assertIn('num_detections', results)
            if include_mask:
                self.assertIn('detection_masks', results)
    def test_forward(self, include_mask, training):
        num_classes = 3
        min_level = 3
        max_level = 4
        num_scales = 3
        aspect_ratios = [1.0]
        image_size = (256, 256)
        images = np.random.rand(2, image_size[0], image_size[1], 3)
        image_shape = np.array([[224, 100], [100, 224]])
        anchor_boxes = anchor.Anchor(min_level=min_level,
                                     max_level=max_level,
                                     num_scales=num_scales,
                                     aspect_ratios=aspect_ratios,
                                     anchor_size=3,
                                     image_size=image_size).multilevel_boxes
        num_anchors_per_location = len(aspect_ratios) * num_scales

        input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, 3])
        backbone = resnet.ResNet(model_id=50, input_specs=input_specs)
        decoder = fpn.FPN(min_level=min_level,
                          max_level=max_level,
                          input_specs=backbone.output_specs)
        rpn_head = dense_prediction_heads.RPNHead(
            min_level=min_level,
            max_level=max_level,
            num_anchors_per_location=num_anchors_per_location)
        detection_head = instance_heads.DetectionHead(num_classes=num_classes)
        roi_generator_obj = roi_generator.MultilevelROIGenerator()
        roi_sampler_obj = roi_sampler.ROISampler()
        roi_aligner_obj = roi_aligner.MultilevelROIAligner()
        detection_generator_obj = detection_generator.DetectionGenerator()
        if include_mask:
            mask_head = instance_heads.MaskHead(num_classes=num_classes,
                                                upsample_factor=2)
            mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                        num_sampled_masks=1)
            mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
                crop_size=14)
        else:
            mask_head = None
            mask_sampler_obj = None
            mask_roi_aligner_obj = None
        model = maskrcnn_model.MaskRCNNModel(backbone, decoder, rpn_head,
                                             detection_head, roi_generator_obj,
                                             roi_sampler_obj, roi_aligner_obj,
                                             detection_generator_obj,
                                             mask_head, mask_sampler_obj,
                                             mask_roi_aligner_obj)

        gt_boxes = np.array(
            [[[10, 10, 15, 15], [2.5, 2.5, 7.5, 7.5], [-1, -1, -1, -1]],
             [[100, 100, 150, 150], [-1, -1, -1, -1], [-1, -1, -1, -1]]],
            dtype=np.float32)
        gt_classes = np.array([[2, 1, -1], [1, -1, -1]], dtype=np.int32)
        if include_mask:
            gt_masks = np.ones((2, 3, 100, 100))
        else:
            gt_masks = None

        results = model(images,
                        image_shape,
                        anchor_boxes,
                        gt_boxes,
                        gt_classes,
                        gt_masks,
                        training=training)

        self.assertIn('rpn_boxes', results)
        self.assertIn('rpn_scores', results)
        if training:
            self.assertIn('class_targets', results)
            self.assertIn('box_targets', results)
            self.assertIn('class_outputs', results)
            self.assertIn('box_outputs', results)
            if include_mask:
                self.assertIn('mask_outputs', results)
        else:
            self.assertIn('detection_boxes', results)
            self.assertIn('detection_scores', results)
            self.assertIn('detection_classes', results)
            self.assertIn('num_detections', results)
            if include_mask:
                self.assertIn('detection_masks', results)
Ejemplo n.º 10
0
def build_maskrcnn(input_specs: tf.keras.layers.InputSpec,
                   model_config: deep_mask_head_rcnn_config.DeepMaskHeadRCNN,
                   l2_regularizer: tf.keras.regularizers.Regularizer = None):
    """Builds Mask R-CNN model."""
    norm_activation_config = model_config.norm_activation
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)

    decoder = decoder_factory.build_decoder(input_specs=backbone.output_specs,
                                            model_config=model_config,
                                            l2_regularizer=l2_regularizer)

    rpn_head_config = model_config.rpn_head
    roi_generator_config = model_config.roi_generator
    roi_sampler_config = model_config.roi_sampler
    roi_aligner_config = model_config.roi_aligner
    detection_head_config = model_config.detection_head
    generator_config = model_config.detection_generator
    num_anchors_per_location = (len(model_config.anchor.aspect_ratios) *
                                model_config.anchor.num_scales)

    rpn_head = dense_prediction_heads.RPNHead(
        min_level=model_config.min_level,
        max_level=model_config.max_level,
        num_anchors_per_location=num_anchors_per_location,
        num_convs=rpn_head_config.num_convs,
        num_filters=rpn_head_config.num_filters,
        use_separable_conv=rpn_head_config.use_separable_conv,
        activation=norm_activation_config.activation,
        use_sync_bn=norm_activation_config.use_sync_bn,
        norm_momentum=norm_activation_config.norm_momentum,
        norm_epsilon=norm_activation_config.norm_epsilon,
        kernel_regularizer=l2_regularizer)

    detection_head = instance_heads.DetectionHead(
        num_classes=model_config.num_classes,
        num_convs=detection_head_config.num_convs,
        num_filters=detection_head_config.num_filters,
        use_separable_conv=detection_head_config.use_separable_conv,
        num_fcs=detection_head_config.num_fcs,
        fc_dims=detection_head_config.fc_dims,
        activation=norm_activation_config.activation,
        use_sync_bn=norm_activation_config.use_sync_bn,
        norm_momentum=norm_activation_config.norm_momentum,
        norm_epsilon=norm_activation_config.norm_epsilon,
        kernel_regularizer=l2_regularizer)

    roi_generator_obj = roi_generator.MultilevelROIGenerator(
        pre_nms_top_k=roi_generator_config.pre_nms_top_k,
        pre_nms_score_threshold=roi_generator_config.pre_nms_score_threshold,
        pre_nms_min_size_threshold=(
            roi_generator_config.pre_nms_min_size_threshold),
        nms_iou_threshold=roi_generator_config.nms_iou_threshold,
        num_proposals=roi_generator_config.num_proposals,
        test_pre_nms_top_k=roi_generator_config.test_pre_nms_top_k,
        test_pre_nms_score_threshold=(
            roi_generator_config.test_pre_nms_score_threshold),
        test_pre_nms_min_size_threshold=(
            roi_generator_config.test_pre_nms_min_size_threshold),
        test_nms_iou_threshold=roi_generator_config.test_nms_iou_threshold,
        test_num_proposals=roi_generator_config.test_num_proposals,
        use_batched_nms=roi_generator_config.use_batched_nms)

    roi_sampler_obj = roi_sampler.ROISampler(
        mix_gt_boxes=roi_sampler_config.mix_gt_boxes,
        num_sampled_rois=roi_sampler_config.num_sampled_rois,
        foreground_fraction=roi_sampler_config.foreground_fraction,
        foreground_iou_threshold=roi_sampler_config.foreground_iou_threshold,
        background_iou_high_threshold=(
            roi_sampler_config.background_iou_high_threshold),
        background_iou_low_threshold=(
            roi_sampler_config.background_iou_low_threshold))

    roi_aligner_obj = roi_aligner.MultilevelROIAligner(
        crop_size=roi_aligner_config.crop_size,
        sample_offset=roi_aligner_config.sample_offset)

    detection_generator_obj = detection_generator.DetectionGenerator(
        apply_nms=True,
        pre_nms_top_k=generator_config.pre_nms_top_k,
        pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
        nms_iou_threshold=generator_config.nms_iou_threshold,
        max_num_detections=generator_config.max_num_detections,
        use_batched_nms=generator_config.use_batched_nms)

    if model_config.include_mask:
        mask_head = deep_instance_heads.DeepMaskHead(
            num_classes=model_config.num_classes,
            upsample_factor=model_config.mask_head.upsample_factor,
            num_convs=model_config.mask_head.num_convs,
            num_filters=model_config.mask_head.num_filters,
            use_separable_conv=model_config.mask_head.use_separable_conv,
            activation=model_config.norm_activation.activation,
            norm_momentum=model_config.norm_activation.norm_momentum,
            norm_epsilon=model_config.norm_activation.norm_epsilon,
            kernel_regularizer=l2_regularizer,
            class_agnostic=model_config.mask_head.class_agnostic,
            convnet_variant=model_config.mask_head.convnet_variant)

        mask_sampler_obj = mask_sampler.MaskSampler(
            mask_target_size=(model_config.mask_roi_aligner.crop_size *
                              model_config.mask_head.upsample_factor),
            num_sampled_masks=model_config.mask_sampler.num_sampled_masks)

        mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
            crop_size=model_config.mask_roi_aligner.crop_size,
            sample_offset=model_config.mask_roi_aligner.sample_offset)
    else:
        mask_head = None
        mask_sampler_obj = None
        mask_roi_aligner_obj = None

    model = deep_maskrcnn_model.DeepMaskRCNNModel(
        backbone=backbone,
        decoder=decoder,
        rpn_head=rpn_head,
        detection_head=detection_head,
        roi_generator=roi_generator_obj,
        roi_sampler=roi_sampler_obj,
        roi_aligner=roi_aligner_obj,
        detection_generator=detection_generator_obj,
        mask_head=mask_head,
        mask_sampler=mask_sampler_obj,
        mask_roi_aligner=mask_roi_aligner_obj,
        use_gt_boxes_for_masks=model_config.use_gt_boxes_for_masks)
    return model
    def test_build_model(self,
                         use_separable_conv,
                         build_anchor_boxes,
                         shared_backbone,
                         shared_decoder,
                         is_training=True):
        num_classes = 3
        min_level = 2
        max_level = 6
        num_scales = 3
        aspect_ratios = [1.0]
        anchor_size = 3
        resnet_model_id = 50
        segmentation_resnet_model_id = 50
        aspp_dilation_rates = [6, 12, 18]
        aspp_decoder_level = 2
        fpn_decoder_level = 2
        num_anchors_per_location = num_scales * len(aspect_ratios)
        image_size = 128
        images = tf.random.normal([2, image_size, image_size, 3])
        image_info = tf.convert_to_tensor([[[image_size, image_size],
                                            [image_size, image_size], [1, 1],
                                            [0, 0]],
                                           [[image_size, image_size],
                                            [image_size, image_size], [1, 1],
                                            [0, 0]]])
        shared_decoder = shared_decoder and shared_backbone
        if build_anchor_boxes or not is_training:
            anchor_boxes = anchor.Anchor(
                min_level=min_level,
                max_level=max_level,
                num_scales=num_scales,
                aspect_ratios=aspect_ratios,
                anchor_size=3,
                image_size=(image_size, image_size)).multilevel_boxes
            for l in anchor_boxes:
                anchor_boxes[l] = tf.tile(
                    tf.expand_dims(anchor_boxes[l], axis=0), [2, 1, 1, 1])
        else:
            anchor_boxes = None

        backbone = resnet.ResNet(model_id=resnet_model_id)
        decoder = fpn.FPN(input_specs=backbone.output_specs,
                          min_level=min_level,
                          max_level=max_level,
                          use_separable_conv=use_separable_conv)
        rpn_head = dense_prediction_heads.RPNHead(
            min_level=min_level,
            max_level=max_level,
            num_anchors_per_location=num_anchors_per_location,
            num_convs=1)
        detection_head = instance_heads.DetectionHead(num_classes=num_classes)
        roi_generator_obj = roi_generator.MultilevelROIGenerator()
        roi_sampler_obj = roi_sampler.ROISampler()
        roi_aligner_obj = roi_aligner.MultilevelROIAligner()
        detection_generator_obj = detection_generator.DetectionGenerator()
        panoptic_segmentation_generator_obj = panoptic_segmentation_generator.PanopticSegmentationGenerator(
            output_size=[image_size, image_size],
            max_num_detections=100,
            stuff_classes_offset=90)
        mask_head = instance_heads.MaskHead(num_classes=num_classes,
                                            upsample_factor=2)
        mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                    num_sampled_masks=1)
        mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(crop_size=14)

        if shared_backbone:
            segmentation_backbone = None
        else:
            segmentation_backbone = resnet.ResNet(
                model_id=segmentation_resnet_model_id)
        if not shared_decoder:
            feature_fusion = 'deeplabv3plus'
            level = aspp_decoder_level
            segmentation_decoder = aspp.ASPP(
                level=level, dilation_rates=aspp_dilation_rates)
        else:
            feature_fusion = 'panoptic_fpn_fusion'
            level = fpn_decoder_level
            segmentation_decoder = None
        segmentation_head = segmentation_heads.SegmentationHead(
            num_classes=2,  # stuff and common class for things,
            level=level,
            feature_fusion=feature_fusion,
            decoder_min_level=min_level,
            decoder_max_level=max_level,
            num_convs=2)

        model = panoptic_maskrcnn_model.PanopticMaskRCNNModel(
            backbone,
            decoder,
            rpn_head,
            detection_head,
            roi_generator_obj,
            roi_sampler_obj,
            roi_aligner_obj,
            detection_generator_obj,
            panoptic_segmentation_generator_obj,
            mask_head,
            mask_sampler_obj,
            mask_roi_aligner_obj,
            segmentation_backbone=segmentation_backbone,
            segmentation_decoder=segmentation_decoder,
            segmentation_head=segmentation_head,
            min_level=min_level,
            max_level=max_level,
            num_scales=num_scales,
            aspect_ratios=aspect_ratios,
            anchor_size=anchor_size)

        gt_boxes = tf.convert_to_tensor(
            [[[10, 10, 15, 15], [2.5, 2.5, 7.5, 7.5], [-1, -1, -1, -1]],
             [[100, 100, 150, 150], [-1, -1, -1, -1], [-1, -1, -1, -1]]],
            dtype=tf.float32)
        gt_classes = tf.convert_to_tensor([[2, 1, -1], [1, -1, -1]],
                                          dtype=tf.int32)
        gt_masks = tf.ones((2, 3, 100, 100))

        # Results will be checked in test_forward.
        _ = model(images,
                  image_info,
                  anchor_boxes,
                  gt_boxes,
                  gt_classes,
                  gt_masks,
                  training=is_training)
    def test_checkpoint(self, shared_backbone, shared_decoder):
        input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, 3])
        backbone = resnet.ResNet(model_id=50, input_specs=input_specs)
        decoder = fpn.FPN(min_level=3,
                          max_level=7,
                          input_specs=backbone.output_specs)
        rpn_head = dense_prediction_heads.RPNHead(min_level=3,
                                                  max_level=7,
                                                  num_anchors_per_location=3)
        detection_head = instance_heads.DetectionHead(num_classes=2)
        roi_generator_obj = roi_generator.MultilevelROIGenerator()
        roi_sampler_obj = roi_sampler.ROISampler()
        roi_aligner_obj = roi_aligner.MultilevelROIAligner()
        detection_generator_obj = detection_generator.DetectionGenerator()
        panoptic_segmentation_generator_obj = panoptic_segmentation_generator.PanopticSegmentationGenerator(
            output_size=[None, None],
            max_num_detections=100,
            stuff_classes_offset=90)
        segmentation_resnet_model_id = 101
        aspp_dilation_rates = [6, 12, 18]
        min_level = 2
        max_level = 6
        aspp_decoder_level = 2
        fpn_decoder_level = 2
        shared_decoder = shared_decoder and shared_backbone
        mask_head = instance_heads.MaskHead(num_classes=2, upsample_factor=2)
        mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                    num_sampled_masks=1)
        mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(crop_size=14)

        if shared_backbone:
            segmentation_backbone = None
        else:
            segmentation_backbone = resnet.ResNet(
                model_id=segmentation_resnet_model_id)
        if not shared_decoder:
            feature_fusion = 'deeplabv3plus'
            level = aspp_decoder_level
            segmentation_decoder = aspp.ASPP(
                level=level, dilation_rates=aspp_dilation_rates)
        else:
            feature_fusion = 'panoptic_fpn_fusion'
            level = fpn_decoder_level
            segmentation_decoder = None
        segmentation_head = segmentation_heads.SegmentationHead(
            num_classes=2,  # stuff and common class for things,
            level=level,
            feature_fusion=feature_fusion,
            decoder_min_level=min_level,
            decoder_max_level=max_level,
            num_convs=2)

        model = panoptic_maskrcnn_model.PanopticMaskRCNNModel(
            backbone,
            decoder,
            rpn_head,
            detection_head,
            roi_generator_obj,
            roi_sampler_obj,
            roi_aligner_obj,
            detection_generator_obj,
            panoptic_segmentation_generator_obj,
            mask_head,
            mask_sampler_obj,
            mask_roi_aligner_obj,
            segmentation_backbone=segmentation_backbone,
            segmentation_decoder=segmentation_decoder,
            segmentation_head=segmentation_head,
            min_level=max_level,
            max_level=max_level,
            num_scales=3,
            aspect_ratios=[1.0],
            anchor_size=3)
        expect_checkpoint_items = dict(backbone=backbone,
                                       decoder=decoder,
                                       rpn_head=rpn_head,
                                       detection_head=[detection_head])
        expect_checkpoint_items['mask_head'] = mask_head
        if not shared_backbone:
            expect_checkpoint_items[
                'segmentation_backbone'] = segmentation_backbone
        if not shared_decoder:
            expect_checkpoint_items[
                'segmentation_decoder'] = segmentation_decoder
        expect_checkpoint_items['segmentation_head'] = segmentation_head
        self.assertAllEqual(expect_checkpoint_items, model.checkpoint_items)

        # Test save and load checkpoints.
        ckpt = tf.train.Checkpoint(model=model, **model.checkpoint_items)
        save_dir = self.create_tempdir().full_path
        ckpt.save(os.path.join(save_dir, 'ckpt'))

        partial_ckpt = tf.train.Checkpoint(backbone=backbone)
        partial_ckpt.read(tf.train.latest_checkpoint(
            save_dir)).expect_partial().assert_existing_objects_matched()

        partial_ckpt_mask = tf.train.Checkpoint(backbone=backbone,
                                                mask_head=mask_head)
        partial_ckpt_mask.restore(tf.train.latest_checkpoint(
            save_dir)).expect_partial().assert_existing_objects_matched()

        if not shared_backbone:
            partial_ckpt_segmentation = tf.train.Checkpoint(
                segmentation_backbone=segmentation_backbone,
                segmentation_decoder=segmentation_decoder,
                segmentation_head=segmentation_head)
        elif not shared_decoder:
            partial_ckpt_segmentation = tf.train.Checkpoint(
                segmentation_decoder=segmentation_decoder,
                segmentation_head=segmentation_head)
        else:
            partial_ckpt_segmentation = tf.train.Checkpoint(
                segmentation_head=segmentation_head)

        partial_ckpt_segmentation.restore(tf.train.latest_checkpoint(
            save_dir)).expect_partial().assert_existing_objects_matched()
    def test_serialize_deserialize(self, shared_backbone, shared_decoder):
        input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, 3])
        backbone = resnet.ResNet(model_id=50, input_specs=input_specs)
        decoder = fpn.FPN(min_level=3,
                          max_level=7,
                          input_specs=backbone.output_specs)
        rpn_head = dense_prediction_heads.RPNHead(min_level=3,
                                                  max_level=7,
                                                  num_anchors_per_location=3)
        detection_head = instance_heads.DetectionHead(num_classes=2)
        roi_generator_obj = roi_generator.MultilevelROIGenerator()
        roi_sampler_obj = roi_sampler.ROISampler()
        roi_aligner_obj = roi_aligner.MultilevelROIAligner()
        detection_generator_obj = detection_generator.DetectionGenerator()
        panoptic_segmentation_generator_obj = panoptic_segmentation_generator.PanopticSegmentationGenerator(
            output_size=[None, None],
            max_num_detections=100,
            stuff_classes_offset=90)
        segmentation_resnet_model_id = 101
        aspp_dilation_rates = [6, 12, 18]
        min_level = 2
        max_level = 6
        aspp_decoder_level = 2
        fpn_decoder_level = 2
        shared_decoder = shared_decoder and shared_backbone
        mask_head = instance_heads.MaskHead(num_classes=2, upsample_factor=2)
        mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                    num_sampled_masks=1)
        mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(crop_size=14)

        if shared_backbone:
            segmentation_backbone = None
        else:
            segmentation_backbone = resnet.ResNet(
                model_id=segmentation_resnet_model_id)
        if not shared_decoder:
            feature_fusion = 'deeplabv3plus'
            level = aspp_decoder_level
            segmentation_decoder = aspp.ASPP(
                level=level, dilation_rates=aspp_dilation_rates)
        else:
            feature_fusion = 'panoptic_fpn_fusion'
            level = fpn_decoder_level
            segmentation_decoder = None
        segmentation_head = segmentation_heads.SegmentationHead(
            num_classes=2,  # stuff and common class for things,
            level=level,
            feature_fusion=feature_fusion,
            decoder_min_level=min_level,
            decoder_max_level=max_level,
            num_convs=2)

        model = panoptic_maskrcnn_model.PanopticMaskRCNNModel(
            backbone,
            decoder,
            rpn_head,
            detection_head,
            roi_generator_obj,
            roi_sampler_obj,
            roi_aligner_obj,
            detection_generator_obj,
            panoptic_segmentation_generator_obj,
            mask_head,
            mask_sampler_obj,
            mask_roi_aligner_obj,
            segmentation_backbone=segmentation_backbone,
            segmentation_decoder=segmentation_decoder,
            segmentation_head=segmentation_head,
            min_level=min_level,
            max_level=max_level,
            num_scales=3,
            aspect_ratios=[1.0],
            anchor_size=3)

        config = model.get_config()
        new_model = panoptic_maskrcnn_model.PanopticMaskRCNNModel.from_config(
            config)

        # Validate that the config can be forced to JSON.
        _ = new_model.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(model.get_config(), new_model.get_config())
    def test_forward(self, strategy, training, shared_backbone, shared_decoder,
                     generate_panoptic_masks):
        num_classes = 3
        min_level = 2
        max_level = 6
        num_scales = 3
        aspect_ratios = [1.0]
        anchor_size = 3
        segmentation_resnet_model_id = 101
        aspp_dilation_rates = [6, 12, 18]
        aspp_decoder_level = 2
        fpn_decoder_level = 2

        class_agnostic_bbox_pred = False
        cascade_class_ensemble = False

        image_size = (256, 256)
        images = tf.random.normal([2, image_size[0], image_size[1], 3])
        image_info = tf.convert_to_tensor([[[224, 100], [224, 100], [1, 1],
                                            [0, 0]],
                                           [[224, 100], [224, 100], [1, 1],
                                            [0, 0]]])
        shared_decoder = shared_decoder and shared_backbone
        with strategy.scope():

            anchor_boxes = anchor.Anchor(
                min_level=min_level,
                max_level=max_level,
                num_scales=num_scales,
                aspect_ratios=aspect_ratios,
                anchor_size=anchor_size,
                image_size=image_size).multilevel_boxes

            num_anchors_per_location = len(aspect_ratios) * num_scales

            input_specs = tf.keras.layers.InputSpec(
                shape=[None, None, None, 3])
            backbone = resnet.ResNet(model_id=50, input_specs=input_specs)
            decoder = fpn.FPN(min_level=min_level,
                              max_level=max_level,
                              input_specs=backbone.output_specs)
            rpn_head = dense_prediction_heads.RPNHead(
                min_level=min_level,
                max_level=max_level,
                num_anchors_per_location=num_anchors_per_location)
            detection_head = instance_heads.DetectionHead(
                num_classes=num_classes,
                class_agnostic_bbox_pred=class_agnostic_bbox_pred)
            roi_generator_obj = roi_generator.MultilevelROIGenerator()

            roi_sampler_cascade = []
            roi_sampler_obj = roi_sampler.ROISampler()
            roi_sampler_cascade.append(roi_sampler_obj)
            roi_aligner_obj = roi_aligner.MultilevelROIAligner()
            detection_generator_obj = detection_generator.DetectionGenerator()

            if generate_panoptic_masks:
                panoptic_segmentation_generator_obj = panoptic_segmentation_generator.PanopticSegmentationGenerator(
                    output_size=list(image_size),
                    max_num_detections=100,
                    stuff_classes_offset=90)
            else:
                panoptic_segmentation_generator_obj = None

            mask_head = instance_heads.MaskHead(num_classes=num_classes,
                                                upsample_factor=2)
            mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                        num_sampled_masks=1)
            mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
                crop_size=14)

            if shared_backbone:
                segmentation_backbone = None
            else:
                segmentation_backbone = resnet.ResNet(
                    model_id=segmentation_resnet_model_id)
            if not shared_decoder:
                feature_fusion = 'deeplabv3plus'
                level = aspp_decoder_level
                segmentation_decoder = aspp.ASPP(
                    level=level, dilation_rates=aspp_dilation_rates)
            else:
                feature_fusion = 'panoptic_fpn_fusion'
                level = fpn_decoder_level
                segmentation_decoder = None
            segmentation_head = segmentation_heads.SegmentationHead(
                num_classes=2,  # stuff and common class for things,
                level=level,
                feature_fusion=feature_fusion,
                decoder_min_level=min_level,
                decoder_max_level=max_level,
                num_convs=2)

            model = panoptic_maskrcnn_model.PanopticMaskRCNNModel(
                backbone,
                decoder,
                rpn_head,
                detection_head,
                roi_generator_obj,
                roi_sampler_obj,
                roi_aligner_obj,
                detection_generator_obj,
                panoptic_segmentation_generator_obj,
                mask_head,
                mask_sampler_obj,
                mask_roi_aligner_obj,
                segmentation_backbone=segmentation_backbone,
                segmentation_decoder=segmentation_decoder,
                segmentation_head=segmentation_head,
                class_agnostic_bbox_pred=class_agnostic_bbox_pred,
                cascade_class_ensemble=cascade_class_ensemble,
                min_level=min_level,
                max_level=max_level,
                num_scales=num_scales,
                aspect_ratios=aspect_ratios,
                anchor_size=anchor_size)

            gt_boxes = tf.convert_to_tensor(
                [[[10, 10, 15, 15], [2.5, 2.5, 7.5, 7.5], [-1, -1, -1, -1]],
                 [[100, 100, 150, 150], [-1, -1, -1, -1], [-1, -1, -1, -1]]],
                dtype=tf.float32)
            gt_classes = tf.convert_to_tensor([[2, 1, -1], [1, -1, -1]],
                                              dtype=tf.int32)
            gt_masks = tf.ones((2, 3, 100, 100))

            results = model(images,
                            image_info,
                            anchor_boxes,
                            gt_boxes,
                            gt_classes,
                            gt_masks,
                            training=training)

        self.assertIn('rpn_boxes', results)
        self.assertIn('rpn_scores', results)
        if training:
            self.assertIn('class_targets', results)
            self.assertIn('box_targets', results)
            self.assertIn('class_outputs', results)
            self.assertIn('box_outputs', results)
            self.assertIn('mask_outputs', results)
        else:
            self.assertIn('detection_boxes', results)
            self.assertIn('detection_scores', results)
            self.assertIn('detection_classes', results)
            self.assertIn('num_detections', results)
            self.assertIn('detection_masks', results)
            self.assertIn('segmentation_outputs', results)

            self.assertAllEqual([
                2, image_size[0] // (2**level), image_size[1] // (2**level), 2
            ], results['segmentation_outputs'].numpy().shape)

            if generate_panoptic_masks:
                self.assertIn('panoptic_outputs', results)
                self.assertIn('category_mask', results['panoptic_outputs'])
                self.assertIn('instance_mask', results['panoptic_outputs'])
                self.assertAllEqual(
                    [2, image_size[0], image_size[1]],
                    results['panoptic_outputs']['category_mask'].numpy().shape)
                self.assertAllEqual(
                    [2, image_size[0], image_size[1]],
                    results['panoptic_outputs']['instance_mask'].numpy().shape)
            else:
                self.assertNotIn('panoptic_outputs', results)
Ejemplo n.º 15
0
    def test_build_model(self,
                         use_separable_conv,
                         build_anchor_boxes,
                         shared_backbone,
                         shared_decoder,
                         is_training=True):
        num_classes = 3
        min_level = 3
        max_level = 7
        num_scales = 3
        aspect_ratios = [1.0]
        anchor_size = 3
        resnet_model_id = 50
        segmentation_resnet_model_id = 50
        segmentation_output_stride = 16
        aspp_dilation_rates = [6, 12, 18]
        aspp_decoder_level = int(np.math.log2(segmentation_output_stride))
        fpn_decoder_level = 3
        num_anchors_per_location = num_scales * len(aspect_ratios)
        image_size = 128
        images = np.random.rand(2, image_size, image_size, 3)
        image_shape = np.array([[image_size, image_size],
                                [image_size, image_size]])
        shared_decoder = shared_decoder and shared_backbone
        if build_anchor_boxes:
            anchor_boxes = anchor.Anchor(
                min_level=min_level,
                max_level=max_level,
                num_scales=num_scales,
                aspect_ratios=aspect_ratios,
                anchor_size=3,
                image_size=(image_size, image_size)).multilevel_boxes
            for l in anchor_boxes:
                anchor_boxes[l] = tf.tile(
                    tf.expand_dims(anchor_boxes[l], axis=0), [2, 1, 1, 1])
        else:
            anchor_boxes = None

        backbone = resnet.ResNet(model_id=resnet_model_id)
        decoder = fpn.FPN(input_specs=backbone.output_specs,
                          min_level=min_level,
                          max_level=max_level,
                          use_separable_conv=use_separable_conv)
        rpn_head = dense_prediction_heads.RPNHead(
            min_level=min_level,
            max_level=max_level,
            num_anchors_per_location=num_anchors_per_location,
            num_convs=1)
        detection_head = instance_heads.DetectionHead(num_classes=num_classes)
        roi_generator_obj = roi_generator.MultilevelROIGenerator()
        roi_sampler_obj = roi_sampler.ROISampler()
        roi_aligner_obj = roi_aligner.MultilevelROIAligner()
        detection_generator_obj = detection_generator.DetectionGenerator()
        mask_head = instance_heads.MaskHead(num_classes=num_classes,
                                            upsample_factor=2)
        mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                    num_sampled_masks=1)
        mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(crop_size=14)

        if shared_backbone:
            segmentation_backbone = None
        else:
            segmentation_backbone = resnet.ResNet(
                model_id=segmentation_resnet_model_id)
        if not shared_decoder:
            level = aspp_decoder_level
            segmentation_decoder = aspp.ASPP(
                level=level, dilation_rates=aspp_dilation_rates)
        else:
            level = fpn_decoder_level
            segmentation_decoder = None
        segmentation_head = segmentation_heads.SegmentationHead(
            num_classes=2,  # stuff and common class for things,
            level=level,
            num_convs=2)

        model = panoptic_maskrcnn_model.PanopticMaskRCNNModel(
            backbone,
            decoder,
            rpn_head,
            detection_head,
            roi_generator_obj,
            roi_sampler_obj,
            roi_aligner_obj,
            detection_generator_obj,
            mask_head,
            mask_sampler_obj,
            mask_roi_aligner_obj,
            segmentation_backbone=segmentation_backbone,
            segmentation_decoder=segmentation_decoder,
            segmentation_head=segmentation_head,
            min_level=min_level,
            max_level=max_level,
            num_scales=num_scales,
            aspect_ratios=aspect_ratios,
            anchor_size=anchor_size)

        gt_boxes = np.array(
            [[[10, 10, 15, 15], [2.5, 2.5, 7.5, 7.5], [-1, -1, -1, -1]],
             [[100, 100, 150, 150], [-1, -1, -1, -1], [-1, -1, -1, -1]]],
            dtype=np.float32)
        gt_classes = np.array([[2, 1, -1], [1, -1, -1]], dtype=np.int32)
        gt_masks = np.ones((2, 3, 100, 100))

        # Results will be checked in test_forward.
        _ = model(images,
                  image_shape,
                  anchor_boxes,
                  gt_boxes,
                  gt_classes,
                  gt_masks,
                  training=is_training)
Ejemplo n.º 16
0
    def test_forward(self, strategy, training, shared_backbone,
                     shared_decoder):
        num_classes = 3
        min_level = 3
        max_level = 4
        num_scales = 3
        aspect_ratios = [1.0]
        anchor_size = 3
        segmentation_resnet_model_id = 101
        segmentation_output_stride = 16
        aspp_dilation_rates = [6, 12, 18]
        aspp_decoder_level = int(np.math.log2(segmentation_output_stride))
        fpn_decoder_level = 3

        class_agnostic_bbox_pred = False
        cascade_class_ensemble = False

        image_size = (256, 256)
        images = np.random.rand(2, image_size[0], image_size[1], 3)
        image_shape = np.array([[224, 100], [100, 224]])
        shared_decoder = shared_decoder and shared_backbone
        with strategy.scope():

            anchor_boxes = anchor.Anchor(
                min_level=min_level,
                max_level=max_level,
                num_scales=num_scales,
                aspect_ratios=aspect_ratios,
                anchor_size=anchor_size,
                image_size=image_size).multilevel_boxes

            num_anchors_per_location = len(aspect_ratios) * num_scales

            input_specs = tf.keras.layers.InputSpec(
                shape=[None, None, None, 3])
            backbone = resnet.ResNet(model_id=50, input_specs=input_specs)
            decoder = fpn.FPN(min_level=min_level,
                              max_level=max_level,
                              input_specs=backbone.output_specs)
            rpn_head = dense_prediction_heads.RPNHead(
                min_level=min_level,
                max_level=max_level,
                num_anchors_per_location=num_anchors_per_location)
            detection_head = instance_heads.DetectionHead(
                num_classes=num_classes,
                class_agnostic_bbox_pred=class_agnostic_bbox_pred)
            roi_generator_obj = roi_generator.MultilevelROIGenerator()

            roi_sampler_cascade = []
            roi_sampler_obj = roi_sampler.ROISampler()
            roi_sampler_cascade.append(roi_sampler_obj)
            roi_aligner_obj = roi_aligner.MultilevelROIAligner()
            detection_generator_obj = detection_generator.DetectionGenerator()
            mask_head = instance_heads.MaskHead(num_classes=num_classes,
                                                upsample_factor=2)
            mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28,
                                                        num_sampled_masks=1)
            mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
                crop_size=14)

            if shared_backbone:
                segmentation_backbone = None
            else:
                segmentation_backbone = resnet.ResNet(
                    model_id=segmentation_resnet_model_id)
            if not shared_decoder:
                level = aspp_decoder_level
                segmentation_decoder = aspp.ASPP(
                    level=level, dilation_rates=aspp_dilation_rates)
            else:
                level = fpn_decoder_level
                segmentation_decoder = None
            segmentation_head = segmentation_heads.SegmentationHead(
                num_classes=2,  # stuff and common class for things,
                level=level,
                num_convs=2)

            model = panoptic_maskrcnn_model.PanopticMaskRCNNModel(
                backbone,
                decoder,
                rpn_head,
                detection_head,
                roi_generator_obj,
                roi_sampler_obj,
                roi_aligner_obj,
                detection_generator_obj,
                mask_head,
                mask_sampler_obj,
                mask_roi_aligner_obj,
                segmentation_backbone=segmentation_backbone,
                segmentation_decoder=segmentation_decoder,
                segmentation_head=segmentation_head,
                class_agnostic_bbox_pred=class_agnostic_bbox_pred,
                cascade_class_ensemble=cascade_class_ensemble,
                min_level=min_level,
                max_level=max_level,
                num_scales=num_scales,
                aspect_ratios=aspect_ratios,
                anchor_size=anchor_size)

            gt_boxes = np.array(
                [[[10, 10, 15, 15], [2.5, 2.5, 7.5, 7.5], [-1, -1, -1, -1]],
                 [[100, 100, 150, 150], [-1, -1, -1, -1], [-1, -1, -1, -1]]],
                dtype=np.float32)
            gt_classes = np.array([[2, 1, -1], [1, -1, -1]], dtype=np.int32)
            gt_masks = np.ones((2, 3, 100, 100))

            results = model(images,
                            image_shape,
                            anchor_boxes,
                            gt_boxes,
                            gt_classes,
                            gt_masks,
                            training=training)

        self.assertIn('rpn_boxes', results)
        self.assertIn('rpn_scores', results)
        if training:
            self.assertIn('class_targets', results)
            self.assertIn('box_targets', results)
            self.assertIn('class_outputs', results)
            self.assertIn('box_outputs', results)
            self.assertIn('mask_outputs', results)
        else:
            self.assertIn('detection_boxes', results)
            self.assertIn('detection_scores', results)
            self.assertIn('detection_classes', results)
            self.assertIn('num_detections', results)
            self.assertIn('detection_masks', results)
            self.assertIn('segmentation_outputs', results)
            self.assertAllEqual([
                2, image_size[0] // (2**level), image_size[1] // (2**level), 2
            ], results['segmentation_outputs'].numpy().shape)