Ejemplo n.º 1
0
 def testAnchorRpnSample(self, num_anchors, num_positives, num_negatives,
                         expected_positives, expected_negatives,
                         image_size):
     match_results_np = np.empty([num_anchors])
     match_results_np.fill(-2)
     match_results_np[:num_positives] = 0
     match_results_np[num_positives:num_positives + num_negatives] = -1
     match_results = tf.convert_to_tensor(value=match_results_np,
                                          dtype=tf.int32)
     anchor_labeler = anchor.RpnAnchorLabeler(match_threshold=0.7,
                                              unmatched_threshold=0.3,
                                              rpn_batch_size_per_im=256,
                                              rpn_fg_fraction=0.5)
     rpn_sample_op = anchor_labeler._get_rpn_samples(match_results)
     labels = [v.numpy() for v in rpn_sample_op]
     self.assertLen(labels[0], num_anchors)
     positives = np.sum(np.array(labels[0]) == 1)
     negatives = np.sum(np.array(labels[0]) == 0)
     self.assertEqual(positives, expected_positives)
     self.assertEqual(negatives, expected_negatives)
Ejemplo n.º 2
0
    def _parse_train_data(self, data):
        """Parses data for training.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      image: image tensor that is preproessed to have normalized value and
        dimension [output_size[0], output_size[1], 3]
      labels: a dictionary of tensors used for training. The following describes
        {key: value} pairs in the dictionary.
        image_info: a 2D `Tensor` that encodes the information of the image and
          the applied preprocessing. It is in the format of
          [[original_height, original_width], [scaled_height, scaled_width],
        anchor_boxes: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, 4] representing anchor boxes at each level.
        rpn_score_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location]. The height_l and
          width_l represent the dimension of class logits at l-th level.
        rpn_box_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location * 4]. The height_l and
          width_l represent the dimension of bounding box regression output at
          l-th level.
        gt_boxes: Groundtruth bounding box annotations. The box is represented
           in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled
           image that is fed to the network. The tennsor is padded with -1 to
           the fixed dimension [self._max_num_instances, 4].
        gt_classes: Groundtruth classes annotations. The tennsor is padded
          with -1 to the fixed dimension [self._max_num_instances].
        gt_masks: groundtrugh masks cropped by the bounding box and
          resized to a fixed size determined by mask_crop_size.
    """
        classes = data['groundtruth_classes']
        boxes = data['groundtruth_boxes']
        if self._include_mask:
            masks = data['groundtruth_instance_masks']

        is_crowds = data['groundtruth_is_crowd']
        # Skips annotations with `is_crowd` = True.
        if self._skip_crowd_during_training:
            num_groundtruths = tf.shape(classes)[0]
            with tf.control_dependencies([num_groundtruths, is_crowds]):
                indices = tf.cond(
                    tf.greater(tf.size(is_crowds), 0),
                    lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
                    lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
            classes = tf.gather(classes, indices)
            boxes = tf.gather(boxes, indices)
            if self._include_mask:
                masks = tf.gather(masks, indices)

        # Gets original image and its size.
        image = data['image']
        image_shape = tf.shape(image)[0:2]

        # Normalizes image with mean and std pixel values.
        image = preprocess_ops.normalize_image(image)

        # Flips image randomly during training.
        if self._aug_rand_hflip:
            if self._include_mask:
                image, boxes, masks = preprocess_ops.random_horizontal_flip(
                    image, boxes, masks)
            else:
                image, boxes, _ = preprocess_ops.random_horizontal_flip(
                    image, boxes)

        # Converts boxes from normalized coordinates to pixel coordinates.
        # Now the coordinates of boxes are w.r.t. the original image.
        boxes = box_ops.denormalize_boxes(boxes, image_shape)

        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            self._output_size,
            padded_size=preprocess_ops.compute_padded_size(
                self._output_size, 2**self._max_level),
            aug_scale_min=self._aug_scale_min,
            aug_scale_max=self._aug_scale_max)
        image_height, image_width, _ = image.get_shape().as_list()

        # Resizes and crops boxes.
        # Now the coordinates of boxes are w.r.t the scaled image.
        image_scale = image_info[2, :]
        offset = image_info[3, :]
        boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                     image_info[1, :], offset)

        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)
        if self._include_mask:
            masks = tf.gather(masks, indices)
            # Transfer boxes to the original image space and do normalization.
            cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0),
                                            [1, 2])
            cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0),
                                     [1, 2])
            cropped_boxes = box_ops.normalize_boxes(cropped_boxes, image_shape)
            num_masks = tf.shape(masks)[0]
            masks = tf.image.crop_and_resize(
                tf.expand_dims(masks, axis=-1),
                cropped_boxes,
                box_indices=tf.range(num_masks, dtype=tf.int32),
                crop_size=[self._mask_crop_size, self._mask_crop_size],
                method='bilinear')
            masks = tf.squeeze(masks, axis=-1)

        # Assigns anchor targets.
        # Note that after the target assignment, box targets are absolute pixel
        # offsets w.r.t. the scaled image.
        input_anchor = anchor.build_anchor_generator(
            min_level=self._min_level,
            max_level=self._max_level,
            num_scales=self._num_scales,
            aspect_ratios=self._aspect_ratios,
            anchor_size=self._anchor_size)
        anchor_boxes = input_anchor(image_size=(image_height, image_width))
        anchor_labeler = anchor.RpnAnchorLabeler(self._rpn_match_threshold,
                                                 self._rpn_unmatched_threshold,
                                                 self._rpn_batch_size_per_im,
                                                 self._rpn_fg_fraction)
        rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors(
            anchor_boxes, boxes,
            tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32))

        # Casts input image to self._dtype
        image = tf.cast(image, dtype=self._dtype)

        # Packs labels for model_fn outputs.
        labels = {
            'anchor_boxes':
            anchor_boxes,
            'image_info':
            image_info,
            'rpn_score_targets':
            rpn_score_targets,
            'rpn_box_targets':
            rpn_box_targets,
            'gt_boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(boxes,
                                                     self._max_num_instances,
                                                     -1),
            'gt_classes':
            preprocess_ops.clip_or_pad_to_fixed_size(classes,
                                                     self._max_num_instances,
                                                     -1),
        }
        if self._include_mask:
            labels['gt_masks'] = preprocess_ops.clip_or_pad_to_fixed_size(
                masks, self._max_num_instances, -1)

        return image, labels