Ejemplo n.º 1
0
def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
    """Generates a config for COCO OD RetinaNet for mobile with QAT."""
    config = retinanet.retinanet_spinenet_mobile_coco()
    task = RetinaNetTask.from_args(quantization=common.Quantization(),
                                   **config.task.as_dict())
    task.model.backbone = backbones.Backbone(
        type='spinenet_mobile',
        spinenet_mobile=backbones.SpineNetMobile(
            model_id='49',
            stochastic_depth_drop_rate=0.2,
            min_level=3,
            max_level=7,
            use_keras_upsampling_2d=True))
    config.task = task

    return config
Ejemplo n.º 2
0
    def test_builder(self, backbone_type, input_size, has_attribute_heads):
        num_classes = 2
        input_specs = tf.keras.layers.InputSpec(
            shape=[None, input_size[0], input_size[1], 3])
        if has_attribute_heads:
            attribute_heads_config = [
                retinanet_cfg.AttributeHead(name='att1'),
                retinanet_cfg.AttributeHead(name='att2',
                                            type='classification',
                                            size=2),
            ]
        else:
            attribute_heads_config = None
        model_config = retinanet_cfg.RetinaNet(
            num_classes=num_classes,
            backbone=backbones.Backbone(
                type=backbone_type,
                spinenet_mobile=backbones.SpineNetMobile(
                    model_id='49',
                    stochastic_depth_drop_rate=0.2,
                    min_level=3,
                    max_level=7,
                    use_keras_upsampling_2d=True)),
            head=retinanet_cfg.RetinaNetHead(
                attribute_heads=attribute_heads_config))
        l2_regularizer = tf.keras.regularizers.l2(5e-5)
        quantization_config = common.Quantization()
        model = factory.build_retinanet(input_specs=input_specs,
                                        model_config=model_config,
                                        l2_regularizer=l2_regularizer)

        _ = qat_factory.build_qat_retinanet(model=model,
                                            quantization=quantization_config,
                                            model_config=model_config)
        if has_attribute_heads:
            self.assertEqual(model_config.head.attribute_heads[0].as_dict(),
                             dict(name='att1', type='regression', size=1))
            self.assertEqual(model_config.head.attribute_heads[1].as_dict(),
                             dict(name='att2', type='classification', size=2))
Ejemplo n.º 3
0
    def test_builder(self, backbone_type, decoder_type, input_size,
                     quantize_detection_head, quantize_detection_decoder):
        num_classes = 2
        input_specs = tf.keras.layers.InputSpec(
            shape=[None, input_size[0], input_size[1], 3])

        if backbone_type == 'spinenet_mobile':
            backbone_config = backbones.Backbone(
                type=backbone_type,
                spinenet_mobile=backbones.SpineNetMobile(
                    model_id='49',
                    stochastic_depth_drop_rate=0.2,
                    min_level=3,
                    max_level=7,
                    use_keras_upsampling_2d=True))
        elif backbone_type == 'mobilenet':
            backbone_config = backbones.Backbone(type=backbone_type,
                                                 mobilenet=backbones.MobileNet(
                                                     model_id='MobileNetV2',
                                                     filter_size_scale=1.0))
        else:
            raise ValueError(
                'backbone_type {} is not supported'.format(backbone_type))

        if decoder_type == 'identity':
            decoder_config = decoders.Decoder(type=decoder_type)
        elif decoder_type == 'fpn':
            decoder_config = decoders.Decoder(type=decoder_type,
                                              fpn=decoders.FPN(
                                                  num_filters=128,
                                                  use_separable_conv=True,
                                                  use_keras_layer=True))
        else:
            raise ValueError(
                'decoder_type {} is not supported'.format(decoder_type))

        model_config = retinanet_cfg.RetinaNet(
            num_classes=num_classes,
            input_size=[input_size[0], input_size[1], 3],
            backbone=backbone_config,
            decoder=decoder_config,
            head=retinanet_cfg.RetinaNetHead(attribute_heads=None,
                                             use_separable_conv=True))

        l2_regularizer = tf.keras.regularizers.l2(5e-5)
        # Build the original float32 retinanet model.
        model = factory.build_retinanet(input_specs=input_specs,
                                        model_config=model_config,
                                        l2_regularizer=l2_regularizer)

        # Call the model with dummy input to build the head part.
        dummpy_input = tf.zeros([1] + model_config.input_size)
        model(dummpy_input, training=True)

        # Build the QAT model from the original model with quantization config.
        qat_model = qat_factory.build_qat_retinanet(
            model=model,
            quantization=common.Quantization(
                quantize_detection_decoder=quantize_detection_decoder,
                quantize_detection_head=quantize_detection_head),
            model_config=model_config)

        if quantize_detection_head:
            # head become a RetinaNetHeadQuantized when we apply quantization.
            self.assertIsInstance(
                qat_model.head,
                qat_dense_prediction_heads.RetinaNetHeadQuantized)
        else:
            # head is a RetinaNetHead if we don't apply quantization on head part.
            self.assertIsInstance(qat_model.head,
                                  dense_prediction_heads.RetinaNetHead)
            self.assertNotIsInstance(
                qat_model.head,
                qat_dense_prediction_heads.RetinaNetHeadQuantized)

        if decoder_type == 'FPN':
            if quantize_detection_decoder:
                # FPN decoder become a general keras functional model after applying
                # quantization.
                self.assertNotIsInstance(qat_model.decoder, fpn.FPN)
            else:
                self.assertIsInstance(qat_model.decoder, fpn.FPN)
Ejemplo n.º 4
0
def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
    """COCO object detection with mobile RetinaNet."""
    train_batch_size = 256
    eval_batch_size = 8
    steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
    input_size = 384

    config = cfg.ExperimentConfig(
        runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
        task=RetinaNetTask(
            annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                         'instances_val2017.json'),
            model=RetinaNet(
                backbone=backbones.Backbone(
                    type='spinenet_mobile',
                    spinenet_mobile=backbones.SpineNetMobile(
                        model_id='49',
                        stochastic_depth_drop_rate=0.2,
                        min_level=3,
                        max_level=7,
                        use_keras_upsampling_2d=False)),
                decoder=decoders.Decoder(type='identity',
                                         identity=decoders.Identity()),
                head=RetinaNetHead(num_filters=48, use_separable_conv=True),
                anchor=Anchor(anchor_size=3),
                norm_activation=common.NormActivation(use_sync_bn=True,
                                                      activation='swish'),
                num_classes=91,
                input_size=[input_size, input_size, 3],
                min_level=3,
                max_level=7),
            losses=Losses(l2_weight_decay=3e-5),
            train_data=DataConfig(input_path=os.path.join(
                COCO_INPUT_PATH_BASE, 'train*'),
                                  is_training=True,
                                  global_batch_size=train_batch_size,
                                  parser=Parser(aug_rand_hflip=True,
                                                aug_scale_min=0.1,
                                                aug_scale_max=2.0)),
            validation_data=DataConfig(input_path=os.path.join(
                COCO_INPUT_PATH_BASE, 'val*'),
                                       is_training=False,
                                       global_batch_size=eval_batch_size)),
        trainer=cfg.TrainerConfig(
            train_steps=600 * steps_per_epoch,
            validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
            validation_interval=steps_per_epoch,
            steps_per_loop=steps_per_epoch,
            summary_interval=steps_per_epoch,
            checkpoint_interval=steps_per_epoch,
            optimizer_config=optimization.OptimizationConfig({
                'optimizer': {
                    'type': 'sgd',
                    'sgd': {
                        'momentum': 0.9
                    }
                },
                'learning_rate': {
                    'type': 'stepwise',
                    'stepwise': {
                        'boundaries':
                        [575 * steps_per_epoch, 590 * steps_per_epoch],
                        'values': [
                            0.32 * train_batch_size / 256.0,
                            0.032 * train_batch_size / 256.0,
                            0.0032 * train_batch_size / 256.0
                        ],
                    }
                },
                'warmup': {
                    'type': 'linear',
                    'linear': {
                        'warmup_steps': 2000,
                        'warmup_learning_rate': 0.0067
                    }
                }
            })),
        restrictions=[
            'task.train_data.is_training != None',
            'task.validation_data.is_training != None',
        ])

    return config