Ejemplo n.º 1
0
    def build_metrics(self, training: bool = True):
        """Build detection metrics."""
        metrics = []
        if training:
            metric_names = [
                'total_loss', 'rpn_score_loss', 'rpn_box_loss',
                'frcnn_cls_loss', 'frcnn_box_loss', 'mask_loss', 'model_loss'
            ]
            for name in metric_names:
                metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

        else:
            if self._task_config.use_coco_metrics:
                self._build_coco_metrics()
            if self._task_config.use_wod_metrics:
                # To use Waymo open dataset metrics, please install one of the pip
                # package `waymo-open-dataset-tf-*` from
                # https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md#use-pre-compiled-pippip3-packages-for-linux
                # Note that the package is built with specific tensorflow version and
                # will produce error if it does not match the tf version that is
                # currently used.
                try:
                    from official.vision.evaluation import wod_detection_evaluator  # pylint: disable=g-import-not-at-top
                except ModuleNotFoundError:
                    logging.error(
                        'waymo-open-dataset should be installed to enable Waymo'
                        ' evaluator.')
                    raise
                self.wod_metric = wod_detection_evaluator.WOD2dDetectionEvaluator(
                )

        return metrics
Ejemplo n.º 2
0
    def build_metrics(self, training: bool = True):
        """Build detection metrics."""
        metrics = []
        metric_names = ['total_loss', 'cls_loss', 'box_loss', 'model_loss']
        for name in metric_names:
            metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

        if not training:
            if self.task_config.validation_data.tfds_name and self.task_config.annotation_file:
                raise ValueError(
                    "Can't evaluate using annotation file when TFDS is used.")
            if self._task_config.use_coco_metrics:
                self.coco_metric = coco_evaluator.COCOEvaluator(
                    annotation_file=self.task_config.annotation_file,
                    include_mask=False,
                    per_category_metrics=self.task_config.per_category_metrics)
            if self._task_config.use_wod_metrics:
                # To use Waymo open dataset metrics, please install one of the pip
                # package `waymo-open-dataset-tf-*` from
                # https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md#use-pre-compiled-pippip3-packages-for-linux
                # Note that the package is built with specific tensorflow version and
                # will produce error if it does not match the tf version that is
                # currently used.
                try:
                    from official.vision.evaluation import wod_detection_evaluator  # pylint: disable=g-import-not-at-top
                except ModuleNotFoundError:
                    logging.error(
                        'waymo-open-dataset should be installed to enable Waymo'
                        ' evaluator.')
                    raise
                self.wod_metric = wod_detection_evaluator.WOD2dDetectionEvaluator(
                )

        return metrics