Ejemplo n.º 1
0
    def test_monthly_specific_mb(self):
        """Test the monthly specific mass balance against the
        corresponding yearly mass balance.
        """

        # run all needed prepro tasks
        gdir = self._setup_mb_test()

        # instance mb models
        vas_mbmod = vascaling.VAScalingMassBalance(gdir)

        # get relevant glacier surface elevation
        min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir)

        # get all month of that year in the
        # floating (hydrological) year convention
        year = 1803
        months = np.linspace(year, year + 1, num=12, endpoint=False)

        # compute monthly specific mass balance for
        # all month of given year and store in array
        spec_mb_month = np.empty(months.size)
        for i, month in enumerate(months):
            spec_mb_month[i] = vas_mbmod.get_monthly_specific_mb(min_hgt,
                                                                 max_hgt,
                                                                 month)

        # compute yearly specific mass balance
        spec_mb_year = vas_mbmod.get_specific_mb(min_hgt, max_hgt, year)

        # compare
        np.testing.assert_allclose(spec_mb_month.sum(), spec_mb_year,
                                   rtol=1e-3)
Ejemplo n.º 2
0
    def _set_up_VAS_model(self):
        """Avoiding a chunk of code duplicate. Set's up a running volume/area
        scaling model, including all needed prepo tasks.
        """

        # read the Hintereisferner DEM
        hef_file = get_demo_file('Hintereisferner_RGI5.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        # initialize the GlacierDirectory
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        # define the local grid and glacier mask
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)

        # process the given climate file
        climate.process_custom_climate_data(gdir)

        # run center line preprocessing tasks
        centerlines.compute_centerlines(gdir)
        centerlines.initialize_flowlines(gdir)
        centerlines.catchment_area(gdir)
        centerlines.catchment_intersections(gdir)
        centerlines.catchment_width_geom(gdir)
        centerlines.catchment_width_correction(gdir)

        # read reference glacier mass balance data
        mbdf = gdir.get_ref_mb_data()
        # compute the reference t* for the glacier
        # given the reference of mass balance measurements
        res = climate.t_star_from_refmb(gdir, mbdf=mbdf['ANNUAL_BALANCE'])
        t_star, bias = res['t_star'], res['bias']

        # --------------------
        #  MASS BALANCE TASKS
        # --------------------

        # compute local t* and the corresponding mu*
        vascaling.local_t_star(gdir, tstar=t_star, bias=bias)

        # instance the mass balance models
        mbmod = vascaling.VAScalingMassBalance(gdir)

        # ----------------
        #  DYNAMICAL PART
        # ----------------
        # get reference area
        a0 = gdir.rgi_area_m2
        # get reference year
        y0 = gdir.read_pickle('climate_info')['baseline_hydro_yr_0']
        # get min and max glacier surface elevation
        h0, h1 = vascaling.get_min_max_elevation(gdir)

        model = vascaling.VAScalingModel(year_0=y0,
                                         area_m2_0=a0,
                                         min_hgt=h0,
                                         max_hgt=h1,
                                         mb_model=mbmod)
        return gdir, model
Ejemplo n.º 3
0
    def test_annual_mb(self):
        """Test the routine computing the annual mass balance."""
        # run all needed prepro tasks
        gdir = self._setup_mb_test()

        # get relevant glacier surface elevation
        min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir)

        # define temporal range
        year = 1975
        years = np.array([year, year])

        # get mass balance relevant climate data
        _, temp, prcp = vascaling.get_yearly_mb_temp_prcp(gdir,
                                                          year_range=years)
        temp = temp[0]
        prcp = prcp[0]

        # read mu* and bias from vascaling_mustar
        vascaling_mustar = gdir.read_json('vascaling_mustar')
        mu_star = vascaling_mustar['mu_star']
        bias = vascaling_mustar['bias']

        # specify scaling factor for SI units [kg s-1]
        fac_SI = cfg.SEC_IN_YEAR * cfg.PARAMS['ice_density']

        # compute mass balance 'by hand'
        mb_ref = (prcp - mu_star * temp - bias) / fac_SI
        # compute mb using the VAS mass balance model
        mb_mod = vascaling.VAScalingMassBalance(gdir).get_annual_mb(min_hgt,
                                                                    max_hgt,
                                                                    year)
        # compare mass balances with bias
        np.testing.assert_allclose(mb_ref, mb_mod, rtol=1e-3)

        # compute mass balance 'by hand'
        mb_ref = (prcp - mu_star * temp) / fac_SI
        # compute mb 'by model'
        mb_mod = vascaling.VAScalingMassBalance(gdir, bias=0). \
            get_annual_mb(min_hgt, max_hgt, year)
        # compare mass balances without bias
        np.testing.assert_allclose(mb_ref, mb_mod, rtol=1e-3)
Ejemplo n.º 4
0
    def test_specific_mb(self):
        """Compare the specific mass balance to the one computed
        using the OGGM function of the PastMassBalance model.
        """

        # run all needed prepro tasks
        gdir = self._setup_mb_test()

        # instance mb models
        vas_mbmod = vascaling.VAScalingMassBalance(gdir)
        past_mbmod = massbalance.PastMassBalance(gdir)

        # get relevant glacier surface elevation
        min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir)

        # define temporal range
        ys = 1802
        ye = 2003
        years = np.arange(ys, ye + 1)

        # get flow lines
        fls = gdir.read_pickle('inversion_flowlines')

        # create empty container
        past_mb = np.empty(years.size)
        vas_mb = np.empty(years.size)
        # get specific mass balance for all years
        for i, year in enumerate(years):
            past_mb[i] = past_mbmod.get_specific_mb(fls=fls, year=year)
            vas_mb[i] = vas_mbmod.get_specific_mb(min_hgt, max_hgt, year)

        # compute and check correlation
        assert corrcoef(past_mb, vas_mb) >= 0.94

        # relative error of average spec mb
        # TODO: does this even make any sense?!
        assert np.abs(rel_err(past_mb.mean(), vas_mb.mean())) <= 0.36

        # check correlation of positive and negative mb years
        assert corrcoef(np.sign(past_mb), np.sign(vas_mb)) >= 0.72

        # compare to reference mb measurements
        mbs = gdir.get_ref_mb_data()['ANNUAL_BALANCE']
        assert corrcoef(vas_mb[np.in1d(years, mbs.index)], mbs) >= 0.79
Ejemplo n.º 5
0
    def test_annual_climate(self):
        """Test my routine against the corresponding OGGM routine from
        the `PastMassBalance()` model.
        """

        # run all needed prepro tasks
        gdir = self._setup_mb_test()

        # instance the mass balance models
        vas_mbmod = vascaling.VAScalingMassBalance(gdir)
        past_mbmod = massbalance.PastMassBalance(gdir)

        # get relevant glacier surface elevation
        min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir)
        heights = np.array([min_hgt, (min_hgt + max_hgt) / 2, max_hgt])

        # specify an (arbitray) year
        year = 1975
        # get mass balance relevant climate information
        temp_for_melt_vas, prcp_solid_vas = \
            vas_mbmod.get_annual_climate(min_hgt, max_hgt, year)
        _, temp_for_melt_oggm, _, prcp_solid_oggm = \
            past_mbmod.get_annual_climate(heights, year)

        # prepare my (monthly) values for comparison
        temp_for_melt_vas = temp_for_melt_vas.sum()
        prcp_solid_vas = prcp_solid_vas.sum()

        # computed positive terminus melting temperature must be equal for both
        # used methods, i.e. temp_VAS == temp_OGGM
        np.testing.assert_allclose(temp_for_melt_vas,
                                   temp_for_melt_oggm[0],
                                   rtol=1e-3)

        # glacier averaged solid precipitation amount must be greater than (or
        # equal to) solid precipitation amount at glacier terminus elevation
        assert md(prcp_solid_oggm[0], prcp_solid_vas) >= 0
        # glacier averaged solid precipitation amount must be comparable to the
        # solid precipitation amount at average glacier surface elevation
        assert rel_err(prcp_solid_oggm[1], prcp_solid_vas) <= 0.15
        # glacier averaged solid precipitation amount must be less than (or
        # equal to) solid precipitation amount at maximum glacier elevation
        assert md(prcp_solid_oggm[2], prcp_solid_vas) <= 0
Ejemplo n.º 6
0
    def test_monthly_climate(self):
        """Test the routine getting the monthly climate against
        the routine getting annual climate.
        """

        # run all needed prepro tasks
        gdir = self._setup_mb_test()

        # instance the mass balance models
        mbmod = vascaling.VAScalingMassBalance(gdir)

        # get relevant glacier surface elevation
        min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir)

        # get all month of the year in the
        # floating (hydrological) year convention
        year = 1975
        months = np.linspace(year, year + 1, num=12, endpoint=False)

        # create containers
        temp_month = np.empty(12)
        prcp_month = np.empty(12)
        # get mb relevant climate data for every month
        for i, month in enumerate(months):
            _temp, _prcp = mbmod.get_monthly_climate(min_hgt, max_hgt, month)
            temp_month[i] = _temp
            prcp_month[i] = _prcp

        # melting temperature and precipitation amount cannot be negative
        assert temp_month.all() >= 0.
        assert prcp_month.all() >= 0.

        # get climate data for the whole year
        temp_year, prcp_year = mbmod.get_annual_climate(min_hgt, max_hgt, year)

        # compare
        np.testing.assert_array_almost_equal(temp_month, temp_year, decimal=2)
        np.testing.assert_array_almost_equal(prcp_month, prcp_year, decimal=2)
Ejemplo n.º 7
0
    def test_run_until_and_store(self):
        """Test the volume/area scaling model against the oggm.FluxBasedModel.

        Both models run the Hintereisferner over the entire HistAlp climate
        period, initialized with the 2003 RGI outline without spin up.

        The following two parameters for length, area and volume are tested:
            - correlation coefficient
            - relative RMSE, i.e. RMSE/mean(OGGM). Whereby the results from the
                VAS model are offset with the average differences to the OGGM
                results.
       """

        # read the Hintereisferner DEM
        hef_file = get_demo_file('Hintereisferner_RGI5.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        # initialize the GlacierDirectory
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        # define the local grid and glacier mask
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)

        # process the given climate file
        climate.process_custom_climate_data(gdir)

        # run center line preprocessing tasks
        centerlines.compute_centerlines(gdir)
        centerlines.initialize_flowlines(gdir)
        centerlines.compute_downstream_line(gdir)
        centerlines.compute_downstream_bedshape(gdir)
        centerlines.catchment_area(gdir)
        centerlines.catchment_intersections(gdir)
        centerlines.catchment_width_geom(gdir)
        centerlines.catchment_width_correction(gdir)

        # read reference glacier mass balance data
        mbdf = gdir.get_ref_mb_data()
        # compute the reference t* for the glacier
        # given the reference of mass balance measurements
        res = climate.t_star_from_refmb(gdir, mbdf=mbdf['ANNUAL_BALANCE'])
        t_star, bias = res['t_star'], res['bias']

        # --------------------
        #  SCALING MODEL
        # --------------------

        # compute local t* and the corresponding mu*
        vascaling.local_t_star(gdir, tstar=t_star, bias=bias)

        # instance the mass balance models
        vas_mbmod = vascaling.VAScalingMassBalance(gdir)

        # get reference area
        a0 = gdir.rgi_area_m2
        # get reference year
        y0 = gdir.read_json('climate_info')['baseline_hydro_yr_0']
        # get min and max glacier surface elevation
        h0, h1 = vascaling.get_min_max_elevation(gdir)

        vas_model = vascaling.VAScalingModel(year_0=y0, area_m2_0=a0,
                                             min_hgt=h0, max_hgt=h1,
                                             mb_model=vas_mbmod)

        # let model run over entire HistAlp climate period
        vas_ds = vas_model.run_until_and_store(2003)

        # ------
        #  OGGM
        # ------

        # compute local t* and the corresponding mu*
        climate.local_t_star(gdir, tstar=t_star, bias=bias)
        climate.mu_star_calibration(gdir)

        # instance the mass balance models
        mb_mod = massbalance.PastMassBalance(gdir)

        # perform ice thickness inversion
        inversion.prepare_for_inversion(gdir)
        inversion.mass_conservation_inversion(gdir)
        inversion.filter_inversion_output(gdir)

        # initialize present time glacier
        flowline.init_present_time_glacier(gdir)

        # instance flowline model
        fls = gdir.read_pickle('model_flowlines')
        y0 = gdir.read_json('climate_info')['baseline_hydro_yr_0']
        fl_mod = flowline.FluxBasedModel(flowlines=fls, mb_model=mb_mod, y0=y0)

        # run model and store output as xarray data set
        _, oggm_ds = fl_mod.run_until_and_store(2003)

        # temporal indices must be equal
        assert (vas_ds.time == oggm_ds.time).all()

        # specify which parameters to compare and their respective correlation
        # coefficients and rmsd values
        params = ['length_m', 'area_m2', 'volume_m3']
        corr_coeffs = np.array([0.96, 0.90, 0.93])
        rmsds = np.array([0.43e3, 0.14e6, 0.03e9])

        # compare given parameters
        for param, cc, rmsd in zip(params, corr_coeffs, rmsds):
            # correlation coefficient
            assert corrcoef(oggm_ds[param].values, vas_ds[param].values) >= cc
            # root mean squared deviation
            rmsd_an = rmsd_bc(oggm_ds[param].values, vas_ds[param].values)
            assert rmsd_an <= rmsd
Ejemplo n.º 8
0
# run center line preprocessing tasks
centerlines.compute_centerlines(gdir)
centerlines.initialize_flowlines(gdir)
centerlines.catchment_area(gdir)
centerlines.catchment_intersections(gdir)
centerlines.catchment_width_geom(gdir)
centerlines.catchment_width_correction(gdir)

# --------------------
#  MASS BALANCE TASKS
# --------------------

# compute local t* and the corresponding mu*
vascaling.local_t_star(gdir)
# instance the mass balance models
mbmod = vascaling.VAScalingMassBalance(gdir)

# ----------------
#  DYNAMICAL PART
# ----------------
# get reference area (from RGI entry)
a0 = gdir.rgi_area_m2
# get reference year (start of climate records)
y0 = gdir.read_pickle('climate_info')['baseline_hydro_yr_0']
# get min and max glacier surface elevation (based on RGI outline)
h0, h1 = vascaling.get_min_max_elevation(gdir)

# initialize iteration counter variable
k = 1

# start iteration process of "finding the start area"
Ejemplo n.º 9
0
def compare(rgi_id, glacier_name):
    """

    :param rgi_id:
    :param glacier_name:
    :return:
    """

    # ---------------------
    #  PREPROCESSING TASKS
    # ---------------------
    # create test directory
    wdir = os.path.join(os.path.abspath('.'), 'comparison_wdir')
    if not os.path.exists(wdir):
        os.makedirs(wdir)
    shutil.rmtree(wdir)
    os.makedirs(wdir)

    # load default parameter file
    cfg.initialize()

    # RGI entity
    # get/downlaod the rgi entity including the outline shapefile
    rgi_df = utils.get_rgi_glacier_entities([rgi_id])
    # set name, since not delivered with RGI
    if rgi_df.loc[int(rgi_id[-5:])-1, 'Name'] is None:
        rgi_df.loc[int(rgi_id[-5:])-1, 'Name'] = glacier_name

    # select single entry
    rgi_entity = rgi_df.iloc[0]

    # GlacierDirectory
    # specify the working directory and define the glacier directory
    cfg.PATHS['working_dir'] = wdir
    gdir = oggm.GlacierDirectory(rgi_entity)

    # DEM and GIS tasks
    # get the path to the DEM file (will download if necessary)
    dem = utils.get_topo_file(gdir.cenlon, gdir.cenlat)
    # set path in config file
    cfg.PATHS['dem_file'] = dem[0][0]
    cfg.PARAMS['border'] = 10
    cfg.PARAMS['use_intersects'] = False
    # run GIS tasks
    gis.define_glacier_region(gdir, entity=rgi_entity)
    gis.glacier_masks(gdir)

    # Climate data
    # using HistAlp
    cfg.PARAMS['baseline_climate'] = 'HISTALP'
    # climate records before 1850 are hardly reliable, which is not so drastic for
    # qualitative experiments (could be driven with random climate anyway)
    # cfg.PARAMS['baseline_y0'] = 1850
    # change hyper parameters for HistAlp
    cfg.PARAMS['prcp_scaling_factor'] = 1.75
    cfg.PARAMS['temp_melt'] = -1.75
    # run climate task
    climate.process_histalp_data(gdir)

    # run center line preprocessing tasks
    centerlines.compute_centerlines(gdir)
    centerlines.initialize_flowlines(gdir)
    centerlines.compute_downstream_line(gdir)
    centerlines.compute_downstream_bedshape(gdir)
    centerlines.catchment_area(gdir)
    centerlines.catchment_intersections(gdir)
    centerlines.catchment_width_geom(gdir)
    centerlines.catchment_width_correction(gdir)

    # --------------------
    #  SCALING MODEL
    # --------------------

    # compute local t* and the corresponding mu*
    vascaling.local_t_star(gdir)

    # instance the mass balance models
    vas_mb_mod = vascaling.VAScalingMassBalance(gdir)

    # get reference area
    a0 = gdir.rgi_area_m2
    # get reference year
    y0 = gdir.read_pickle('climate_info')['baseline_hydro_yr_0']
    y1 = gdir.read_pickle('climate_info')['baseline_hydro_yr_1']
    # get min and max glacier surface elevation
    h0, h1 = vascaling.get_min_max_elevation(gdir)

    # instance VAS model
    vas_model = vascaling.VAScalingModel(year_0=y0, area_m2_0=a0,
                                         min_hgt=h0, max_hgt=h1,
                                         mb_model=vas_mb_mod)
    # run model over all HistAlp climate period
    vas_df = vas_model.run_and_store(y1, reset=True)
    # get relevant parameters
    years_vas = vas_df.index.values
    length_m_vas = vas_df.length_m.values
    area_m2_vas = vas_df.area_m2.values
    volume_m3_vas = vas_df.volume_m3.values

    # ------
    #  OGGM
    # ------

    # compute local t* and the corresponding mu*
    climate.local_t_star(gdir)
    climate.mu_star_calibration(gdir)

    # instance the mass balance models
    mb_mod = massbalance.PastMassBalance(gdir)

    # run inversion tasks
    inversion.prepare_for_inversion(gdir)
    inversion.mass_conservation_inversion(gdir)
    inversion.filter_inversion_output(gdir)

    # initialize present time glacier
    flowline.init_present_time_glacier(gdir)

    # instance flowline model
    fls = gdir.read_pickle('model_flowlines')
    y0 = gdir.read_pickle('climate_info')['baseline_hydro_yr_0']
    y1 = gdir.read_pickle('climate_info')['baseline_hydro_yr_1']
    fl_mod = flowline.FluxBasedModel(flowlines=fls, mb_model=mb_mod, y0=y0)

    # run model and store output as xarray data set
    _, oggm_ds = fl_mod.run_until_and_store(y1)

    years_oggm = oggm_ds.hydro_year.values
    # annual index must be equal
    np.testing.assert_array_equal(years_oggm, years_vas)
    length_m_oggm = oggm_ds.length_m.values
    area_m2_oggm = oggm_ds.area_m2.values
    volume_m3_oggm = oggm_ds.volume_m3.values

    # define column names for DataFrame
    names = ['length_vas', 'length_oggm',
             'area_vas', 'area_oggm',
             'volume_vas', 'volume_oggm']
    # combine glacier geometries into DataFrame
    df = pd.DataFrame(np.array([length_m_vas, length_m_oggm,
                                area_m2_vas, area_m2_oggm,
                                volume_m3_vas, volume_m3_oggm]).T,
                      index=years_vas, columns=names)
    # save to file
    store = True
    if store:
        # define path and file names
        folder = '/Users/oberrauch/work/master/data/'
        df.to_csv(folder+'run_comparison.csv')

    def plot_both(vas_df, oggm_df, ref=None, correct_bias=False,
                  title='', ylabel='', file_path='', exp=0):
        """ Plot geometric parameters of both models.
        If a `file_path` is given, the figure will be saved.

        :param vas_df: (pandas.Series) geometric glacier parameter of the VAS model
        :param oggm_df: (pandas.Series) geometric glacier parameter of the OGGM
        :param ref: (pandas.Series) measured glacier parameter, optional
        :param title: (string) figure title, optional
        :param ylabel: (string) label for y-axis, optional
        :param file_path: (string) where to store the figure, optional
        :param exp: (int) exponent for labels in scientific notation, optional
        """
        beamer = True
        if beamer:
            mpl.rc('axes', titlesize=18)
            mpl.rc('axes', labelsize=14)
            mpl.rc('xtick', labelsize=14)
            mpl.rc('ytick', labelsize=14)
            mpl.rc('legend', fontsize=10)
        # create figure and first axes
        fig = plt.figure(figsize=[6, 4])
        ax = fig.add_axes([0.15, 0.1, 0.8, 0.8])

        # define colors
        c1 = 'C0'
        c2 = 'C1'
        c3 = 'C3'
        # plot vas and OGGM parameters
        ax.plot(oggm_df.index, oggm_df.values, c=c2, label='OGGM')
        ax.plot(vas_df.index, vas_df.values, c=c1, label='VAS')
        if ref:
            # plot reference parameter if given
            ax.plot(ref.index, ref.values, c=c3, label='measurements')
        if correct_bias:
            # plot bias corrected vas
            df_ = pd.DataFrame([oggm_df, vas_df]).T
            bias = vas_df.values - df_.mean().diff().iloc[1]
            ax.plot(vas_df.index, bias, c=c1, ls='--',
                    label='VAS, bias corrected')
            # add RMSD as text
            ax.text(0.05, 0.05,
                    'RMSD: {:.1e}'.format(utils.rmsd(oggm_df, bias)),
                    transform=plt.gca().transAxes)

        # add correlation coefficient as text
        ax.text(0.05, 0.11, 'Corr. Coef.: {:.2f}'.format(
            utils.corrcoef(oggm_df, vas_df)),
                    transform=plt.gca().transAxes)

        # add title, labels, legend
        ax.set_title(title)
        ax.set_ylabel(ylabel)
        ax.legend()

        import matplotlib.ticker

        class OOMFormatter(matplotlib.ticker.ScalarFormatter):
            def __init__(self, order=0, fformat="%1.1f", offset=False, mathText=False):
                self.oom = order
                self.fformat = fformat
                matplotlib.ticker.ScalarFormatter.__init__(self, useOffset=offset, useMathText=mathText)

            def _set_orderOfMagnitude(self, nothing):
                self.orderOfMagnitude = self.oom

            def _set_format(self, vmin, vmax):
                self.format = self.fformat
                if self._useMathText:
                    self.format = '$%s$' % matplotlib.ticker._mathdefault(self.format)

        # use scientific notation with fixed exponent according
        ax.yaxis.set_major_formatter(OOMFormatter(exp, "%1.2f"))

        # store to file
        if file_path:
            plt.savefig(file_path, bbox_inches='tight',
                        format=file_path.split('.')[-1])

    # specify plot directory
    folder = '/Users/oberrauch/work/master/plots/'

    # plot length
    plot_both(df.length_vas, df.length_oggm, correct_bias=True,
              title='Glacier length - {}'.format(glacier_name),
              ylabel=r'Length [m]',
              file_path=os.path.join(folder, '{}_length.pdf'.format(rgi_id)),
              exp=3)
    # plot area
    plot_both(df.area_vas, df.area_oggm, correct_bias=True,
              title='Surface area - {}'.format(glacier_name),
              ylabel=r'Area [m$^2$]',
              file_path=os.path.join(folder, '{}_area.pdf'.format(rgi_id)),
              exp=6)
    # plot volume
    plot_both(df.volume_vas, df.volume_oggm, correct_bias=True,
              title='Glacier volume - {}'.format(glacier_name),
              ylabel=r'Volume [m$^3$]',
              file_path=os.path.join(folder, '{}_volume.pdf'.format(rgi_id)),
              exp=9)